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"Floods have been many things to many people. To Noah and his people the 

Deluge was a manifestation of a wrathful God. To the Pharaohs 16 'ells' on the 

Nile gage meant wafa -a period of abundance, a contented people, and above all 

a freedom to tax without fear of unrest. To the people of the Far East floods 

have made plains and deltas on which to subsist in spite of a lifelong threat of 

death by drowning. In the United States they probably stimulate more interest 

among more diverse groups than any other natural phenomenon. 

To reporters and editors of the daily press they are dramatic news. 

To those caught in the swirling mud-ladden waters they represent days and 

nights of terror. 

To the Red Cross workers, National Guard units, or citizens huriedly pressed 

into service to carry sandbags or to contribute money, food, and clothing, or to 

provide shelter for the homeless, they represent a call to action, a summons 

that is gladly met. 

To hydrologists floods mean the immediate translation of measurements of 

rain, snow, wind, and ground conditions into forecasts of river stages and 

their widespread dissemination by radio, telephone, and the press. If the 

danger is overestimated, the forecasting service may be discredited; if it is 

underestimated, the result is added damage and loss of life. 

To river engineers floods mean measurements of stages and volumes under 

the worst possible conditions; the study of ways to reduce damage; and the 

design, coonstruction, and operation of extensive dikes, levees, flood walls, 

channels, dams, and reservoirs -protective works which must not fail but 

which must function effectively to the limits of their designed capacity. 

To farmers they mean erosion and loss of topsoil on barren or newly planted 

side-hill fields, and inundation and flooding of crops on valley bottom lands. 

To conservationists the gullied fields and loss of valuable topsoil indicte a need 

for improved land-use practices and measures to increase infiltration and 

retard erosion. 

To legislators and constitutional lawyers floods have often represented a peg on 

which to hang measures an d practices apparently designed not so much to 

reduce flood damage as to stabilize the economy, promote the general welfare, 

or in some instances just curry political favor [ ... ]. 

To water users, especially in the West, they mean recharged ground water and 

the filling of storage reservoirs. 



www.manaraa.com

v 

To city and state planning boards and commissions they represent a need for 

rules and regulations whereby flood-hazard lands may be appropriately 

utilized. 

To statisticians they mean a series of events among which they look in vain for 

the alchemy of cyclic variations. 

To insurance executives they represent almost the only loss or damage that 

apparently cannot be profitably underwritten. 

To bankers they reflect the size and suitability of loans. 

To political scientists and economists they may present a picture of 

management or mismanagement which can only be corrected by more federal 

control, more regional authorities, or more state and local participation, 

depending on the point of view. 

To some people floods may be only a source of inconvenience; to others they 

may be an immediate danger; to all of us as citizens they are a natural 

phenomenon on which we will have spent [several] million dollars under our 

present flood-control policy." 

(Reprinted from Hoyt and Langbein, 1955) 
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CHAPTER 1. INTRODUCTION 

"I have never seen anything on this scale before ... It was awful'', 

proclaimed President Bill Clinton, touring Des Moines by helicopter on an 

inspection visit to Iowa in early July 1993 (Cochran, 1993). The floods of the 

1993 summer were indeed terrible and the costliest and most devastating floods 

in US history since 1930 (Cochran, 1993; Mairson, 1994; National Weather 

Service, 1994). Nine states -North Dakota, South Dakota, Minnesota, 

Wisconsin, Iowa, Nebraska, Illinois, Missouri and Kansas-, more than 15% of 

the contiguous US, were catastrophically impacted. A wet Fall, premature 

snowmelt in the Spring, and heavy rains in the Summer resulted in above­

normal soil moisture and water storage conditions in the Upper Mississipi 

and Missouri River basins. Record breaking floods on the Missouri and the 

Mississipi rivers rampaged through the Midwest. The summer saw heavy, 

unprecedented storms and unrelenting rainfall on Minnesota, Nebraska, 

Iowa, Kansas, Illinois and Missouri. During June and July, heavy rains fell 

39 out of 54 days. The Missouri and Mississipi, destroying and washing away 

everything in their paths, crested at all time highs. Through the middle of 

August, Iowa had 12 consecutive weeks of above-normal rainfall. The average 

state rainfall for July was more than 25 centimeters, the highest July total in 

121 years of record keeping. In Ames, central Iowa, both the Skunk River and 

Squaw Creek rose above their banks. On the Iowa State University campus, 

Hilton Coliseum filled with over 4 meters of water-up to the first row of 

parquet-level seats. University buildings sustained an estimated 7. 7 millions 

of dollars in damage. The whole city of Ames had over 10 million dollars total 

flood damages (Tebben et al., 1997). By the time the rivers quit raging in Iowa, 

seven people had died; more than 21,000 houses, apartments and mobile 

homes were destroyed or damaged; crop losses were estimated to be at least 1 

billion dollars and rising as farmers stared at an uncertain harvest, and total 

damage was conservatively estimated at 27 billion. "We just hope this is the 

last one", said Jerry Veit of Chelsea, Iowa (Cochran, 1993). 

Unfortunately, no one could assure him that such an extreme flood will not 

occur again. Why? Because floods are natural events. As emphasized by Dr. 
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G. Galloway (1997, personal communication), no one across the world knows 

why floods occur. They are normally occurring events and, because of this 

inherent nature, are simply inevitable. Damages caused by flooding are 

however not natural events. Focusing on trying to reduce the devastating 

consequences of flooding represents our only asset in this battle against 

extreme natural events. It is estimated that about 17,000 cities in the US have 

flood prone areas. Residential and business development have always 

historically taken place in floodplain areas since rivers are a key to 

development (Cooper, 1993). Throughout history, people have always settled 

next to waterways because of the advantages they offer in transportation, 

commerce, energy, water supply, soil fertility and waste disposal 

(Montgomery, 1989). The source of wealth and way of life along the river 

formed the main vicinity for work places, which forced towns to settle in 

floodplains. A better management and regulation of use of floodplains by 

human activities could possibly mitigate the impacts of a flood on people's lives 

and properties, but is not easy to devise due to the intricacies of economical and 

political considerations that come into play. Preventing development in 

hazardous land tracts would be one way to regulate land use in the river basin. 

The relocation of endangered buildings or buildings that have already been 

flooded several times could help diminish the flood threat. Finally, the 

development of performant early flood warning systems is necessary in areas 

that have been populated for a long time and where the potential for loss of life 

and property damage is real. 

Accurate and rapid forecasting of high flow events in floodplain areas 

constitutes a significant challenge for planners and city officials. For the last 

few decades, the flood phenomenon has been the object of particular attention 

from scientists as well as from government, because of the human and 

economic damage it could generate. Computers have revolutionized the flood 

warning technology. Sophisticated systems of flood forecasting have been 

developed around the world (see Chapter II). They combine remote rain 

gauges and river stage instruments with powerful software run on base 

station computers. The traditional approach to flood forecasting is to use 

rainfall input estimated from a number of rain gauges, driving a lumped 

(spatially averaged) parameter hydrological model. The advent of new 

technologies such as weather radars and satellites, Geographic Information 
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Systems (GISs), and high-speed computer workstations, provides new 

opportunities for improved hydrologic forecasting. The imput that drives most 

hydrologic models is precipitation, which has never been widely available on a 

spatially distributed basis. It is true that, with a rain gauge network of about 1 

raingage per 52 to 520 km2, the available data in some areas of the US are 

sufficient so that some level of rainfall-runoff modeling using distributed 

parameter sets and distributed precipitation inputs could be accomplished to 

some extent. Hydrologists responsible for operational forecasting have used 

various techniques to compute inputs from existing precipitation gauge 

networks used to drive rainfall-runoff models. 

Currently, NEXRAD (Next Generation Weather Radar) WSR-88D (Weather 

Surveillance Radar-1988 Doppler) radars have been installed at various 

locations across the US (see Appendix B) to provide radar coverage over 

essentially the entire country. Information from the WSR-88D can be 

processed and quality controlled through a series of precipitation data 

processing programs, resulting in quantitative precipitation estimates at a 4 

km grid scale and 1 hour time intervals. The high spatial and temporal 

resolution of these precipitation data provides hydrologists with new input to 

rainfall-runoff models. Such input has never before been available. The WSR-

88D represents a significant milestone for hydrologic modeling because it will 

allow for gridded, real-time and quantitative estimates of precipitation to be 

processed. The availability of NEXRAD rainfall data enhances the use of 

distributed simulation approaches that take into account spatial variations of 

rainfall. 

The Squaw Creek basin in central Iowa has generated several major floods 

over the past century. Ames, a city of 48,000 inhabitants, is located within the 

watershed. Although several studies have been undertaken by different 

agencies and a city flood warning system designed, the potential for a 

damaging flash flood event remains (Glanville, 1987; Tebben, 1997). Devising 

an optimum flood warning system is the best solution to such a threat to 

human life and property. The use of a system coupling WSR-88D rainfall data 

with a runoff hydrologic model could represent an adequate method of flood 

forecasting in the Squaw Creek river basin and would be an asset to the 

current Ames flood warning system. Collaborative work has been initiated in 

1996 between the Iowa State University Civil Engineering Department and the 
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Hydrologic Engineering Center (HEC) in Davis, CA. The HEC research group 

has recently devised a new modeling approach called the ModClark River 

Basin Analysis Procedure, that integrates NEXRAD rainfall data and GIS 

Digital Elevation Models (DEMs) into hydrologic modeling. This new rainfall­

runoff modeling methodology is included in HEC's Hydrologic Modeling 

System, HEC-HMS. It is part of the HEC NexGen Software Project, which is 

developing successor generation sofware packages for use in hydrologic 

engineering, water resource planning and project operation. The ModClark 

procedure is new and needs some testing for its application to flat area basins. 

The topographical configuration of the Squaw Creek watershed, typical of Iowa 

plains, made it an interesting site for testing the model. The ModClark model 

was developed for the Squaw Creek basin. The model was then verified and 

adjusted with some real historical storm event simulations. 
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CHAPTER 2. LITERATURE REVIEW 

"Those who cannot remember the past are condemned to repeat it", said 

George Santayana in 1905 (Keller and Capelli, 1992). It is a common place that 

those who always ignore lessons of the past must bear the consequences when 

things happen again. The repetitive nature of many natural phenomena such 

as floods is undisputed (Keller and Capelli, 1992). Floods are dangerous, life­

threatening and destructive (Boning and Stallings, 1992). Accounts of floods 

and flood disasters appear in numerous biblical writings (Hoyt and Langbein, 

1955). The Romans used dams and diversions in attempting to reduce 

potential floods. Floods have been the scourge of India, China and other 

countries of the Far East. In Europe, Italy, France and Germany in particular 

have a history of record floods. Concerns about floods have existed in the 

United States since the first settlers arrived. Floods are the most common and 

widespread of all natural disasters -except fire- and occur within all 50 states 

(FEMA, 1996). They have caused a greater loss of life -death of more than 

10,000 people since 1900- and property -total over $1 billion each year-, and have 

disrupted more families and communities in the US than all other natural 

hazards combined. The earth has a history of repetitive events so it can be 

argued that a fair understanding of the historical behavior of a river can 

enhance environmental planning and reduce all kinds of disasters stemming 

from natural physical processes. But things are not as straightforward in 

reality. As from ancient times, human settlements have usually been located 

close to a river (Cooper, 1993; Montgomery, 1989). Old cities were situated on 

river banks because the river provided water supply, transportation, and took 

away any waste. The fine sediment deposited over the floodplain during 

flooding made soils especially fertile. In addition to providing scenic features 

to live near, the stream also represented a natural defense mechanism. These 

places have evolved in time but their location has remained unchanged. 

Nowadays, development in these floodplain areas has become intensive and 

keeps on expanding. Flooding events still occur, having a potentially greater 

impact on riparian communities as urbanization intensifies and natural flood 

control systems such as native vegetation cover give way to impervious 
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surfaces. Efforts to reduce flood-related deaths and damages have therefore 

been increasing. Many different measures for coping with floods have been 

developed over the course of time (Yevjevich, 1994). The most well-known 

structural measures are levees, dams and storage reservoirs, towards which 

efforts were primarily directed. Non-structural measures consist mainly of 

floodplain regulation, insurance and flood forecast and represent "newer" 

approaches (Boning and Stallings, 1992). Interest in flood forecasting has 

particularly increased in the last 20 years. The need for protection against 

floods is critical for communities located close to a river. Having an adequate 

early warning system that can be relied upon therefore represents an 

extremely useful asset. 

2.1. History of flood warning 

Early flood-warning systems for people living along streams involved 

personal travel and verbal exchange of information (Boning and Stallings, 

1992). Communication systems such as the telephone greatly improved the 

timeliness of flood warnings. Federal, state and local water management 

agencies began to remotely access data from the US Geological Survey (USGS) 

gaging stations in the 1930's by an instrument called "Telemark". When 

accessed by telephone, the Telemark transmitted river flow stage by a series of 

beeps or rings. High frequency radio also began to be used in the 1930's to 

obtain rivers stage data. By the 1950's, river stage at hundreds of USGS gages 

throughout the US could be accessed to forecast floods, provide flood warnings, 

or help water management for drought situations. The continued evolution of 

communication and stage-sensing equipment has further improved data 

access for flood-warning and flood-forecasting purposes (Chow et al., 1988; 

Clark, 1994; Latkovich and Leavesley, 1993; National Weather Service, 1994; 

Swain, 1996; US Geological Survey, 1996; Wennenberg, 1985). The principal 

devices currently in use in USGS gages for obtaining near real-time data for 

flood warning or other water-mangement purposes are those that transmit 

data via satellite to a receiving station where the data are then relayed with 

conventional radio and telephone systems. Microwave and satellite 

transmission of data are valuable for contributing to the timeliness of data 

critical to flood forecasting. They also provide continuous access to remote 

recording sites which are difficult to access by land. 
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The initial use of remotely accessed data to forecast floods was often limited 

to the interpretation of correlative relations that existed between different 

streams or stream locations (Boning and Stallings, 1992). This required a 

great deal of intuitive expertise and knowledge on the part of the river or 

weather forecaster. The rapid development of more sophisticated computer 

systems since the 1970's, however, has permitted large amounts of data to be 

incorporated into computer-simulation models (Nelson, 1992). Computers 

have revolutionized flood warning technology by incorporating remote rain 

gage and river stage data with powerful software, which is of critical use to 

provide warnings or forecasts of floods. 

2.2. River forecasting at the National Weather Service 

The National Weather Service (MWS), which is part of the National Oceanic 

and Atmospheric Adminstration (NOAA) is the federal agency in charge of 

weather forecasting and warning for the nation (Burnash, 1995; Mason and 

Weiger, 1995). The mission of the NWS's Hydrologic Services is to save lives 

and decrease property damage by issuing timely flood warnings and river 

stage forecasts. Although many cities, counties or other local flood­

management agencies are involved in the operation of local flood-warning 

networks, the NWS, through its nationwide hydrologic-forecasting mandate, is 

the principal agency that uses non structural methods to decrease flood 

damage (Boning and Stallings, 1992). Flooding along major rivers that is 

caused by rainfall takes many hours and even weeks to develop. Floods caused 

by snowmelt runoff may take up to several months to develop. Flash floods 

occur when intense precipitation falls during a brief time span on smaller 

rivers. The time between the onset of this intense precipitation and the 

cresting of the river is hours instead of days. More than 10,000 precipitation 

and streamflow stations provide hydrologic data to NWS offices across the 

country for use in flood forecasting. The USGS is the principal source of data 

on river flow depth and discharge (Mason and Weiger, 1995). Hydrologic data 

collection at the stream gaging station is telemetered through the 

Geostationary Operational Environmental Satellite (GOES) to regional NWS 

River Forecast Centers (RFCs). Across the US, 13 RFCs monitor the nation's 

river system and are responsible for flood warnings within at least one major 

river system (National Weather Service Communications Group, 1996b). To 
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develop flood forecasts, the RFCs develop and calibrate complex mathematical 

models of how the rivers respond to snowmelt and rainfall (Page and Smith, 

1994; National Weather Service, 1996a). The technology of the Sacramento 

Catchment Model is the primary modeling component, with spatially lumped 

parameters (Burnash, 1995). Rainfall data are entered into the model, which 

estimates the river stage and discharge that will result. This is used in 

making hydrologic forecasts and advisories (Mason and Weiger, 1995; 

National Weather Service, 1994). These models are developed for preselected 

forecast service points --about 4,000 across the nation--, which are usually 

located along major rivers or near urban areas having a history of flooding. 

2.3. The arrival of NEXRAD radars 
Expanded use of telemetry at the USGS streamflow stations and refinement 

of telemetry equipment continue to improve the timeliness and reliability of 

data that are transmitted for forecasting purposes (Boning and Stallings, 

1992). Nevertheless, a new era of river and flood forecasting is beginning 

(Shedd and Fulton, 1993). The NWS is beginning a major modernization of its 

forecasting system and hydrologic forecast operations in the future will differ 

dramatically from those in the pre-modified NWS. The goal of this 

modernization effort is to create an integrated forecast environment for 

improved and effective forecasting (Fread et al., 1991; Hudlow, 1988; Shelton 

and May, 1996). In addition to a networked suite of scientific superspeed 

workstations and tools appropriate to specific weather problems, the Advanced 

Weather Interactive Processing System (AWIPS) will include the 

implementation of NEXRAD into the hydrometeorological forecast applications 

defined in the modernized NWS. A WIPS is a high-speed weather computer 

and communication network that enables forecasters to collect and manage 

complicated meteorological information promptly and then interpret it within 

a few seconds (Reed, 1997). AWIPS national network is scheduled to be 

deployed mid 1999. The end goal of the modernization effort is to develop the 

capability to issue warnings of flood and flash flood events in real-time. 

Conventional NWS WSR-57 and WSR-74 radars have been progressively 

replaced by the new WSR-88D radar system since 1991, which is the keystone of 

the system modernization. 
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According to the NWS, the WSR-88D system represents a key component in 

warning improvement (Fulton, 1997; Polger et al., 1994). The advantages of the 

WSR-88D over conventional radars can be broken into four basic areas : 

improved sensibility, improved resolution, automatic volume scanning and 

enhanced capabilities (see Appendix B). The performance of the severe local 

storm and flash flood warning programs at five NWS offices -in Florida, 

Virginia, Missouri, Kansas and Texas- before and after the availability of the 

WSR-88D was quantitatively investigated in 1993 (Polger et al., 1994). Resulting 

statistics showed that the warnings improved dramatically when the WSR-88D 

was in operation. In particular, the probability of detection of severe weather 

events increased and the number of false alarms decreased. There was also a 

marked improvement in the lead time -time from the issuance of the warning 

to the beginning time of the event- for all severe local storm and flash flood 

events. In Arkansas in Spring 1997, forecasters using Doppler radar were 

able to issue timely and accurate warnings of tornadoes, giving residents as 

much as 32 minutes to seek shelter -compared with the usual national average 

warning time of 11 minutes (Reed, 1997). Without the Doppler radar, 

casualties would have been far worse. The attractiveness of NEXRAD data for 

flood forecasting is the reason the NWS's goal is to use them in hydrologic 

modeling at the RFCs (National Weather Service Communications Group, 

1997). Gridded radar high resolution quantitative estimates of precipitation 

can be processed into a time series of basin average precipitation values for a 

time duration of generally 1 hour (Shelton and May, 1996; Page, 1996). This 

pre-processing uses the output of the Stage III radar data (see Appendix B). 

The data can then be input into the NWS River Forecast System (NWSRFS), 

which is a modular graphical and interactive system containing a variety of 

models and procedures (Hudlow, 1988; Page, 1996; Page and Smith, 1996). The 

NWS is currently in the midst of the modernization program and work is 

ongoing on the integration of NEXRAD radar data into the hydrologic forecast 

modeling system (Ingram et al., 1996; Page, 1996). Precipitation input to the 

NWSRFS has traditionally been through basin-average precipitation time 

series derived from available precipitation gage observations. With the arrival 

of spatially distributed rainfall estimates for the WSR-88D, changes need to be 

made to the NWSRFS to accommodate the new data by moving from lumped 

parameter modeling to more of a distributed parameter hydrologic modeling 
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approach for river forecasting (National Weather Service, 1994; Smith et al. , 

1996b). 

The use of NEXRAD rainfall data in flood forecasting is thus 

unprecedented and modeling with this type of precipitation data is just 

beginning. So far, the Arkansas-Red River Basin RFC has been the only one to 

test the new forecast program. The A WIPS has not been fully developed to all 

NWS offices yet (Page, 1996). Stage III radar data is also not available all over 

the nation at this point in time; the same is true for level II data (Cram, 1996; 

Cram, 1997) (see Appendix B). It is however clear that WSR-88D gridded 

quantitative rainfall estimates is of high interest for the improvement of 

forecasting capabilities. The fine spatial and temporal scales of the data are 

unique advantageous features promising a new future to river flow 

forecasting. Current literature reveals the existence of a general consensus 

about the subject. Diverse agencies, research centers and universities involved 

in hydrologic modeling foresee a great potential in taking advantage of the new 

technology (Birks et al., 1991; Borga and Di Luzio, 1992; Capovilla et al., 1991; 

DeVantier et al., 1993; Haggett et al., 1991; James et al., 1993; Mimikou et al., 

1996; Ogden and Julien, 1994; Oliveira and Ford, 1991; Schultz, 1994). Recent 

advances in computer science and technology are now available to the practice 

of hydrology, which has become increasingly conmputational during the past 

recent years (Dodson, 1993; Engdahl and McKim, 1991). The widespread 

availability of digital computers with sufficient speed and storage capacity has 

rendered hydrologic computations easier. It is thus technically possible for 

these computer systems to supply all the hydrologic and meteorologic data 

required by hydrologic models. The integration and processing of spatially 

distributed radar rainfall data is technically completely feasible, though not 

simple. 

2.4. Flood-forecasting methods currently used 
This complexity of integration, added to the young age of the radar 

technology, might be responsible for the fact that several other methods of flood 

forecasting are currently still in use. In Japan, river forecasting of floods uses 

a runoff calculation method called Multi-Tank Matrix Method for Runoff 

(MTM method) (Okamoto, 1993). This computerized calculation, applied in an 

ungaged or gaged basin, determines the discharge-storage relation for a 
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channel by both using hydrologic and hydraulic channel characteristics. A 

statistical approach to early flood warning is used in France by the Water 

Research Service of Electricite de France (EDF) (La Barbera et al. , 1993; Obled, 

1989). It is based on a collection of historical meteorologic files that are 

seasonally split. Almost all major events are currently detected up to 3 days in 

advance but on a very large space scale and with a high percentage of false 

alarms. French meteorologists however consider the statistical approach 

more reliable than meteorological models. The ARAMIS weather radar 

network of France is expanding to provide more accurate meteorologic data 

(Lanza et al., 1994). In Canada, one approach to basin flood forecasting is the 

use of a large amount of hydrologic -ie: surface soil moisture, surface soil 

temperature- and meteorological -ie: snow cover, radiation, precipitation­

information online and available in real time (Whiting and Wheaton, 1987). It 

is fed into a hydro-meteorological system comprised of several computer 

modules analyzing the water budget, flow routing and hydrograph output used 

for flood warning. The processing speed of this system is of concern. In the 

Mediterranean Italian area, where flash floods rank high in the list of major 

hazards, early warnings rely on the accurate Quantitative Precipitation 

Forecasting (QPF) (La Barbera et al. , 1993; Lanza et al., 1994). Meteorological 

data interpretation, validation, and integration is the key to hydrological 

forecasting and is based upon the joint use of remotely sensed information -

mostly from METEOSAT- and ground measured data. The NOAA has 

developed a river forecast system for the Nile in Egypt (Barrett, 1993; Koren and 

Barrett, 1994). The system uses satellite imagery from the METEOSAT 

satellite as input. Precipitation data are then processed through a distributed 

water balance model and a routing model to produce a runoff forecast to 

predict inflows into the Aswan High Dam. A flood forecasting system based 

upon a raingage network is more commonly encountered (Billuart and 

Tourasse, 1980; Chow et al., 1988; Clark, 1994; Corradini et al. , 1982; National 

Weather Service Communications Group, 1996b; Oliveira and Ford, 1991; 

Stanescu and Zanescu, 1980; Tebben, 1997; Wenyao et al., 1985). Gaged 

catchments' rainfall data obtained from the telemetered system has been 

traditionally used and input into rainfall-runoff models. A large number of 

rainfall-runoff models exist and are employed in various situations (Todini, 
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1988; Peters, 1993). Examples include the ARNO model, HEC-1 and the 

Sacramento Watershed Model. 

Satellite remote sensing data is also used in runoff models (Engman and 

Gurney, 1991). Reviewing literature shows that, in general, satellite imagery 

of various types is currently more commonly used than weather radar data in 

hydrologic modeling (Engman, 1993; Groves et al., 1985; Taillade, 1985; Tao 

and Kouwen, 1989; Schultz, 1994; Sharma et al., 1996). 

2.5. Hydrologic modeling with radar data 
Cases of research work using weather radar rainfall data for flood 

forecasting are not numerous. The Experimental Center for Hydrology and 

Meteorology in Teolo, Italy, is using weather radar rainfall estimates for high­

flow forecasting (Capovilla et al., 1991). This center is the only one in Italy 

making use of such data for formulating forecasts. The radar used is a C­

hand Doppler dual-polarization radar operational since 1988. It is connected 

through a microwave link to the center as well as the telemetered network of 

meteorological stations. Research is currently ongoing so as to use the 

telemetric data from the ground network to assess the radar data 

measurements. A database management system allows the storage, retrieval 

and processing of data for input to the models. The forecast models used are of 

the lumped type: HECl-F and ITFORMO. They process the mean areal 

rainfall computed for each subbasin from the precipitation data. In the UK, 

the use of C-band radar to provide quantitative rainfall information has been a 

growing feature of the Thames area's flood warning system these past years 

(Haggett et al, 1991). Both raingage network and single-site radar data are 

tele-transmitted to the control room for flood warning. Radar rainfall totals 

are calculated for various time periods and corrected, if judged necessary, 

with rainfall ground-based measurements using some empirically 

determined ratios of radar/gage data. Flood forecasting modeling is 

performed at some specific points -known to experience frequent flooding- by 

two different rainfall-runoff softwares: a synthetic unit hydrograph model to 

accommodate the flashy urban subcatchment around London, and a multiple­

zone model for the rural larger catchments. Development and improvement of 

the flood forecasting system is being carried on. The Wes sex region in the UK 

is also working on developing a similar integrated flow forecasting system 
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(Birks et al., 1991). Research is also ongoing in the Wales region and the 

northwest part of the UK with the goal of establishing a real-time hydrologic 

forecasting model (Cluckie et al., 1987). Besides Italy and the UK, research 

work is carried on in Greece. A hydrometeorological study in a river basin has 

been conducted in central Greece to demonstrate the use of a weather radar for 

rainfall and flood flow forecasting (Mimikou and Baltas, 1994 and 1996). The 

HECl-F rainfall-runoff model was applied twice, first by using as input the 

mean areal raingage rainfall derived by applying the Thiessen polygon 

method, and second by applying the mean areal radar (WSR-74 type) data over 

the basin. It was found that processed weather radar data merged with 

adequate raingage rainfall information can be effective for flood-flow 

forecasting. The rising limb and peak discharge of all streamflow 

hydrographs computed from weather radar data and calibrated with raingage 

data were more accurate than the corresponding ones from hydrographs 

computed from raingage rainfall data alone. Hudlow (1988) notes that other 

countries view weather radar as a principal system for improving rainfall 

observations and flood forecasting procedures. An example of work underway 

in Germany has been presented by Klatt and Schultz (1985). Their flood 

forecasting rainfall-runoff model called HYREUN relies upon the use of C­

hand radar rainfall data averaged over the whole basin and a rainfall 

forecasting procedure. No further information on their work can be found in 

current literature. The same is true for the WATFLOOD flood forecasting 

system, developed in Canada, which incorporates weather radar data in a 2 

km square grid format (Kouwen, 1988). Data management programs include 

a simulation model called SIMPLE, which takes into account surface storage, 

infiltration and interflow, and an optimization algorithm for real-time 

operation. Japan is also moving towards the use of observations from weather 

radar (Lu, personal communication, 1997). A distributed hydrologic model , 

based on the Xinanjiang distributed model used in China (Zhao, 1992; Zhao 

and Liu, 1995), is currently under development (Lu et al., 1996a and 1996b). 

From a computed DEM and delineated channel network, hydrologic attributes 

are extracted from the 100 m square grid data. The computation of Horton­

Strahler's stream order forms the basis for channel routing. The Japanese 

Ministry of Construction Yakushidake weather radar data grid --3 km square 

grid-- is then overlaid on the basin grid. The Xinanjiang model dates from 



www.manaraa.com

14 

1973 and is based on the concept of runoff formation on repletion of storage. 

The new model is not yet operational. All the countries cited are currently 

developing their weather radar networks, just beginning their research work, 

and published reports on their results are scarce . 

It is interesting to note that, even though some of the above research cases 

use mean areal precipitation values from the radar data, results of flood 

forecasting are judged satisfactory. Both British and Greek authors indicate 

that weather radar's value in terms of the spatial and temporal variation of 

rainfall is beyond doubt . This is particularly apparent for local convective 

storms which can easily remain undetected by a conventional network of 

raingages and for frontal storms whose movement can be readily captured by 

the radar. It is also worth mentioning that all of the above cited research work 

applies to weather radars that are not dopplerized. Hence, one can only expect 

similar or better flood forecasting results with a technically superior radar like 

the WSR-88D in the US. 

Such a new technology however presents certain problems or challenges, 

that were pointed out by the previous research works. The central question 

around weather radar data is its accuracy (Collier, 1996; Hudlow et al., 1991; 

Seo, 1998; Smith and Krajewski, 1991). Knowledge of this accuracy is of crucial 

importance for assessment of the effects of errors in rainfall estimates on flow 

forecasts. Weather radar measurements of precipitation can be improved by 

calibrating the precipitation computed from radar data with measured 

raingage data (James et al., 1993; Shedd and Fulton, 1993; Shelton and May, 

1996). At the NWS, NEXRAD data is available in 3 different levels of 

precipitation processing, corresponding to different levels of ground-truthing 

with a network of raingages (see Appendix B). In addition, interference from 

mountains, lighting or hail can adversely affect Doppler radar performance 

(National Weather Service, unknown date; Reed, 1997). Some turbulence­

detection systems are therefore being devised by NWS researchers. 

2.6. Hydrologic modeling with NEXRAD data 
As mentioned earlier, level III WSR-88D rainfall data is desirable for flood 

forecasting modeling and is only used by the NWS at the Oklahoma location of 

one of its RFCs for issuance of river forecasts. Concerning the use of NEXRAD 

data, the NWS hydrologic forecasting system is far from being operational at 
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this point. Researchers at the Hydrologic Research Lab (HRL) of the NWS are 

currently studying a semi-distributed modeling approach where mean areal 

precipitation values are derived from NEXRAD data for each subbasin 

(National Weather Service Hydrologic Research Lab, 1997). The next step in 

their research will address the development of a gridded distributed parameter 

model. In the US, such modeling has just begun and, although different 

agencies are working on it, publications on the subject are scarce. Direct use 

of radar rainfall data in operational hydrologic forecasting is not yet a 

generalized practice. Rainfall-runoff simulation using NEXRAD rainfall data 

is investigated at the US Army Corps of Engineers Hydrologic Engineering 

Center (HEC) in California (Kull et al., 1996). An initial application of a newly 

devised modeling approach has been undertaken in the Illinois River 

watershed in Oklahoma and Arkansas using the only stage III data available 

to date (Peters and Easton, 1996). Since then, the Salt River basin in Missouri 

has been selected as a demonstration site (Hydrologic Engineering Center, 

1996a). The model has also recently been developed for the Muskingum River 

basin in Ohio (Hydrologic Engineering Center, 1996c). Results are 

encouraging although it is evident that the availability of stage III data would 

be a marked improvement. The value of a flood-forecasting system depends on 

the lead time it provides for issuing warnings (Peters, 1993). A minimum lead 

time is needed for the system to be practical. The lead time that is potentially 

achievable depends on: (1) the spatial and temporal characteristics of storm 

rainfall and the ability to forecast these, (2) rainfall-runoff response 

characteristics of the watershed and the ability to simulate these and, (3) the 

time required to recognize and evaluate the flood threat and take appropriate 

action. The value of a warning depends also on its reliability. Short-term 

hydrologic forecasting refers to forecasts with lead times of hours to several 

days, and is the case of all cities located in the vicinity of a river. Hydrologic 

models for short-term forecasting may employ channel routing, rainfall­

runoff simulation, or both (Lettenmaier and Wood, 1993). The choice of a 

model type depends on the required forecast lead time, the characteristics of 

the basin and the storm events. For example, for quick responding -flashy­

watersheds, lead times are very short and a forecast of precipitation is needed 

because future precipitation will reach the forecasting point within the lead 

time. Flood forecasting models, like the one HEC is working on, could probably 



www.manaraa.com

16 

be appropriate in such cases if they can use NEXRAD data in real-time. This 

could possibly help ameliorate the lead time in the future. 

Another important trait of the HEC model is its use of GIS. GIS are 

computer based systems that provide powerful data mangement capabilities 

for handling spatial databases. The important relationship of map 

information and spatial data to hydrologic analyses makes hydrology a natural 

field for the application of GIS (Deckers and Te Stroet, 1996; Woodbury and 

Jawed, 1993). In recent years, more powerful GIS tools have become available 

at ever decreasing costs, and data that can be used in a GIS to assist in 

performing detailed hydrologic analyses is rapidly becoming available through 

public and private efforts. In addition to these factors, the natural appeal of 

the graphical analysis and display of GIS data contributes to the popularity of 

this technology. Numerous studies describe research efforts involving 

hydrologic applications of GIS ranging from the synthesis and 

characterization of hydrologic tendences to the prediction of response to 

hydrologic events (DeVantier and Feldman, 1993). GIS is an emerging 

computer technology therefore the challenge for the hydrology discipline 

consists of determining how to use GIS in a useful fashion. For example, a 

wealth of information about the morphology of a land surface is available from 

DEMs. Since so much of hydrology is linked to processes on the earth's 

surface, the use of GIS in delineating depressions, overland flow paths and 

watershed boundaries is obvious (Da Ros and Borga, 1997; Jenson, 1991; 

O'Callaghan and Mark, 1984; Quinn et al., 1991; Tarboton et al., 1991). HEC's 

new approach makes use of these procedures (Hydrologic Engineering Center, 

1996b). With the arrival of gridded precipitation estimates from NEXRAD, 

specific GIS procedures are needed for the computation of the necessary 

rainfall-runoff modeling parameters for streamflow forecast from the 

superposition of the radar grid over the watershed boundaries. In their new 

model, researchers at HEC have focused on writing programs to accomplish 

these tasks (Feldman, 1995; Hydrologic Engineering Center, 1996b). They, and 

the Center for Research in Water Resources in Texas, are currently pursuing 

their efforts in refining the set of procedures (Reed and Maidment, 1995). No 

other similar research work has been encountered in the published literature. 
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2. 7. Rainfall-runoff modeling techniques 

The relationship between rainfall and runoff has been one of the central 

themes of hydrologic research for many years (O'Connell, 1991). With the 

growth of digital computing power in the 50s and 60s, an increase in 

hydrologic modeling activity took place and hundreds of rainfall-runoff models 

have been described in the literature (Loague and Freeze, 1985; Peters, 1993; 

Renard et al., 1982). All models seek to simplify the complexity of the real 

world by selectively exaggerating the fundamental aspects of a system at the 

expense of incidental detail (Anderson and Burt, 1985). In presenting an 

approximate view of reality, a model must remain simple enough to 

understand and use, yet complex enough to be representative of the system 

being studied. All hydrologic models are approximations of reality, so the 

output of the actual system can never be forecast with certainty. Hydrologic 

phenomena vary in the three space dimensions, time and randomness (Chow 

et al., 1988). A practical model usually considers only one or two sources of 

variation. Deterministic models -a given input always produces the same 

output- are the most commonly used in the field of hydrology. To model the 

complete drainage area system accurately would call for a very detailed 

knowledge of the basin, of the physical and biological processes governing 

water movement and the way that these interact. In practice, this is not 

feasible and simplifications have to be made (Blackie and Eeles, 1985). These 

can be either in the representation of the physical structure or in the 

representation of the processes involved. The choice of what to simplify and to 

what extent can be dictated by a wide range of considerations. The most 

common simplification made in basin modeling is lumping or spatially 

averaging. The implication is that the basin system, its output and response 

can be represented mathematically only using the dimensions of depth and 

time. The key factor in the successful application of lumped models is the 

stability of the drainage area in terms of its physical characteristics and the 

stability of the spatial distribution of precipitation. The aggregated empirical 

parameters that they contain have a complicated physical interpretation and a 

large range of variation (Kuchment et al., 1996). Lumped models have been 

the traditional approach to rainfall-runoff modeling (Beven, 1985; Chow et al., 

1988; Peters and Easton, 1996). The most widely used model of this type is the 

HEC-1 flood model, developed by HEC. But in recent years, interest towards 
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gaining a better understanding of the role of spatial variability and scale in the 

behavior of a hydrologic system has been growing (Beven, 1989 and 1991; 

Collier, 1996; Grayson et al., 1992; Klemes, 1983; Ogden and Julien, 1993; 

Sipavalan et al., 1987). Distributed models are also called physically based. By 

physically based, one means the model is firmly based on the understanding of 

the physics of the hydrologic processes that control the watershed response. 

Physically based hydrologic models are necessarily distributed because the 

equations on which they are defined generally involve several coordinates. The 

existence of numerous complex equations requiring a large amount of 

calculations, and thus the need for some appropriate computer systems, 

probably restricted the use of distributed models in the past research 

applications. The development of distributed modeling has been a slow and 

faltering process. However, a number of organizations have developed 

distributed models. The Hydrologic European System (SHE) model was 

developed in a collaboration between Denmark, France and the UK (Abbott et 

al., 1986a and 1986b). The Institute of Hydrology Distributed Model (IHDM) 

(Beven et al., 1987; Calver and Wood, 1995), TOPMODEL (Beven et al., 1979 and 

1995; Coles et al., 1997; Morris, 1980) and the Japanese model mentioned 

earlier (Lu et al., 1996a and 1996b) are other examples. 

Distributed models are believed to offer a great potential in four major areas 

(Beven, 1985). These are the forecasting of the effects of land-use change, 

movement of pollutants and sediments, effects of spatially variable inputs and 

outputs, and the hydrologic response of ungaged basins where no data are 

available for calibration of a lumped model. The spatially distributed nature of 

the input data of distributed models and their physically based parameter 

values are the major advantages. One current major concern is how to deal 

with the temporal and spatial rainfall variability over the basin (Coles et al., 

1997; Obled, 1989; O'Connell, 1991; Ogden and Julien, 1993; Shah et al., 1996). 

The importance of the spatial and temporal rainfall distribution on the runoff 

hydrograph of a basin has been demonstrated by many studies (Foufoula­

Georgiou and Georgakakos, 1991). For example, Wilson et al. (1979) concluded 

that the spatial distribution of rain and the accuracy of the precipitation input 

considerably influence the volume of storm runoff, time-to-peak, and the peak 

runoff of small catchments. Hamlin (1983), Nicks (1982) and Milly and 

Eagleson (1988) also reached similar conclusions for drainage basins of 
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various sizes. NEXRAD weather radar gridded data offers a new 

measurement of the spatial development of precipitation, which represents a 

qualitative change with respect to the type of information previously available, 

and brings in a new perspective in modeling efforts. In that sense, distributed 

modeling is the only viable option to incorporate this new information into the 

modeling process (Cluckie et al., 1987; Garrote and Bras, 1995a; National 

Weather Service, 1994; Todini, 1980). Garrote and Bras (1995a and 1995b) are 

working on developing a distributed model for flood forecasting that can accept 

distributed rainfall input. The model, called Distributed Basin Simulator, is 

based on detailed topographic information from DEMs and the variable source 

area concept with a kinematic infiltration model. As mentioned earlier, Lu et 

al. (1996a and 1996 b) in Japan are developing a distributed hydrologic model 

for use with weather radar distributed rainfall data. Research work by Shah 

et al. (1995), with the SHE, also tries to provide ditributed rainfall inputs. The 

WATFLOOD model in Canada is another example of current efforts towards 

integrating gridded radar data in hydrologic forecasting systems (Kouwen, 

1988). Documented studies on the topic are scarce in the current literature. 

One of the concepts behind HEC's new flood forecasting model is the use of a 

distributed procedure so as to accommodate the spatial nature of NEXRAD 

rainfall data. It seems clear that distributed models will become more used in 

the near future, therefore focusing on their improvement might be a wise 

option. One however needs to keep in mind that physically based models, even 

though they offer a better process representation and predictive capability of 

runoff modeling, are still only models (Kuchment et al., 1996). Their ability to 

simulate and predict the behavior of any given river basin depends on the 

adequacy of their representation of the basin, available data, and the 

computational procedures used. There is no such thing as a fully distributed 

model since an assumption of constant parameter values always needs to be 

done at some spatial level in the process. 

2.8. Recap 
Flood forecasting systems to reduce heavy damages caused by floodings 

have been in the past recent years the object of great interest among 

hydrologists. Although some systems are successfully operating in some 

basins, futher research, both theoretical and experimental, is needed. The 
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traditional approach to flood forecasting has been the use of rainfall input 

estimated from a number of raingages driving a lumped parameter hydrologic 

model. An example of such application is the National Weather Service 

Forecasting System. The advent of new t echnologies such as the WSR-88D 

weather radar, GIS and high-speed computer workstations provides new 

opportunities for improved hydrologic forecasting. In particular, the high 

resolution gridded precipitation data from NEXRAD has prompted the need for 

hydrologists to reexamine existing rainfall-runoff models. The challenge 

appears to be the implementation of physically-based models that can take 

maximum advantage of the new data. Researchers at HEC in California are 

working on the problem. Their new semi-distributed flood forecasting model 

makes use of NEXRAD rainfall data and GIS. It is not completely operational 

yet and needs refining and improvement. This project is a collaboration work 

with researchers of the HEC group to develop and test the model in a flat 

region like Iowa. The study basin is the Squaw Creek watershed in central 

Iowa, which has a history of flooding. The hope is that a new technology such 

as NEXRAD can help guard against loss of life and property form extreme 

weather by increasing the lead time. This would then provide an answer to 

what Mark Twain used to say: "Everybody talks about the weather, but nobody 

does anything about it" (Reed, 1997). 
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CHAPI'ER 3. DESCRIPTION OF THE STUDY SITE 

3.1. Characteristics of the Squaw Creek basin 

The Squaw Creek watershed is located in Story, Boone, and Hamilton 

. counties in central Iowa. It is typical of watersheds that lie in recently 

glaciated agricultural landscapes of central Iowa and the Midwest (Prior, 

1991). Because of the glaciation which occurred as recently as 14,000 ybp, the 

overall topography is youthful, with an incompletely developed drainage 

system. The watershed is part of a larger river basin, the Skunk River Basin, 

covering 11280 km2, which extends southeastward to the Mississipi River 

(Figure 3.1) (Heinitz, 1978). 

The Squaw Creek drainage area is small, covering approximately 563 km2 

(Figure 3.2). It has a narrow floodplain of about 0.5 km wide which provides 

little storage capacity for flood waters (Snyder & Associates Inc., 1996). The 

main channel is about 53 km in length. Squaw Creek is a third-order stream 

and drains level to gently undulating topography before emptying into the 

South Skunk River. Average channel slope is about 1.7 m/km (Slack et al., 

1993). The creek begins in southwestern Hamilton county, flows through 

northeastern Boone county and northwestern Story county before reaching the 

South Skunk River. Main tributaries to Squaw Creek include, from north to 

south, Crooked Creek, Montgomery Creek, Lyndis Creek, Onion Creek, Clear 

Creek, College Creek, and Worrell Creek. 

Most of the area was originally covered by a continuous mosaic of prairies, 

forests and wetlands (Thompson, 1992). These ecosystems provided a natural 

equilibrium for the water cycle, with extensive areas of high water infiltration 

resulting in low runoff (Anderson et al., 1996). After the arrival of Euro­

American settlers in the mid-1800s, the original landscape was, for more than 

90%, gradually converted to agricultural and urban uses. Nowadays, most of 

the area in the Squaw Creek watershed is in cultivation, with corn and 

soybeans being the major crops (Andrews and Dideriksen, 1981; DeWitt, 1984; 

Dideriksen, 1986). Smaller acreages of pasture, oats, hay and woodland are 

found as well. A small urban area is present in the basin: the city of Ames. 

located at the confluence of Squaw Creek with the South Skunk River, and 
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comprising approximately 6 km of reach on Squaw Creek (Figure 3.2). Other 

smaller communities are Stratford and Stanhope located in the northern 

portion of the basin, and Gilbert in the southeastern portion. The road network 

within the watershed includes US Highways 30 and 69 and State Highways 175 

and 17. A major east-west railway also crosses the basin at Ames 

The predominantly agricultural landscape is due to the fact that soils are 

particularly fertile in this part of the state. They are located within the end 

moraine of the last glacial advances called the Des Moines Lobe and all formed 

in glacial till or alluvium from till (Andrews and Dideriksen, 1981; DeWitt, 

1984; Dideriksen, 1986; Thompson, 1992). The major soil associations in the 

Squaw Creek watershed are the Clarion-Webster-Nicolett, Clarion-Storden­

Coland, Hayden-Lester-Storden, Coland-Spillville-Zook and Canisteo-Okoboji­

Nicolett (Glanville, 1987). These soil groups are characterized by low 

elevations and a moderate relief. Because many soils are poorly drained and 

many wetlands represented an obstacle to cultivation and grazing, an 

extensive, yet unmapped, tile drainage system has been established since the 

beginning of this century. The presence of such subsurface tiles probably did 

impact the overall runoff potential within the basin and increased the flood 

hazard (Montgomery, 1986). In addition, channelization and excavation of 

drainage ditches have sped up the movement of water and created deeply 

incised channels with unstable banks. Modern agriculture has thus 

accelerated the streamflow in the landscape and made the area more prone to 

flooding. 

Soil survey data (Andrews and Dideriksen, 1981; DeWitt, 1984; Dideriksen, 

1986) and USGS water reports (Slack et al., 1993) indicate that the average 

annual precipitation over the basin is approximately 81 cm. Of this, about 75% 

usually falls between April and September. Precipitation early in Spring in 

conjunction with snow melt can create favorable flooding conditions. 

3.2. Historical flooding in the Squaw Creek basin 
Due to the drainage network, the land use, and the topography of the Squaw 

Creek basin, a flooding peak discharge response from peak precipitation 

usually occurs within only 12 hours (Snyder & Associates Inc., 1996). For 

nearly 100 years now, loss of life and considerable property damage has 

occurred because of flash flooding of the stream. Streamflow data from the US 
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Geological Survey gauging station located in Ames , 3.8 km upstream from the 

mouth of the basin, indicate that major floods have occurred several times 

(Table 3.1) (David Conell, personal communication, 1997; Glanville, 1987; 

Tebben, 1997; US Department of the Interior Geological Survey, 1985, 1991, 

1994, 1997). It is interesting to point out that these events only occur between 

the months of March and August, which is correlated to the precipitation 

pattern mentioned earlier. 

Table 3.1. Notable recorded floods in the Squaw Creek Basin (greater than 

115 m 3/s) 

Date 

June 4, 1918 

July 17, 1922 

March 1, 1965 

June 27, 1975 

March 19, 1979 

June 13, 1984 

June 17, 1984 

May 19, 1990 

June 17, 1990 

July 9, 1993 

July 13, 1993 

June 17, 1996 

Gage Height (m )a 

4.42 

3.26 

3.26 

4.27 

3.60 

3.95 

3.89 

3.23 

4.87 

5.64 

4.24 

4.66 

Discharge (m3/s ) 

(Instantaneous Peak 

Flow) 

195.39 

116.95 

118.93 

319.98 

150.08 

203.31 

193.12 

118.93 

353.96 

688.10 

245.22 

359.62 

a Present gage was installed in 1965. Prior to 1925, a non-recording gage 

was located 0.9 km upstream from the present gage at a different datum. No 

official gage was maintained from May 1927 to February 1965. 

The first official gauge measurement of flooding in the Squaw Creek basin 

was recorded in June 1918. Since then, several flooding situations have been 

observed (Table 3.1). These situations correspond to an exceedence of the flood 

stage of 2.1 m (Heinitz and Wiitala, 1978). Based on the extent of the damage it 

caused, the flood of 1975 was described as the largest that ever occurred in the 

basin (Heinitz and Wiitala, 1978; Lara and Heinitz, 1976). Property damage 



www.manaraa.com

26 

was estimated to exceed $1,000,000 and one person died. The floods of the 

summer of 1993 however beat that record (Einhellig and Eash, 1996). The 

magnitude of the 1993 floods was due to a persistent wet-weather pattern 

throughout the Upper Midwestern US for at least 6 months preceding the event 

(Parrett et al., 1993; Wahl et al., 1993). Heavy rainfall events of between 5 and 

13 cm fell over the basin during late June and early July 1993 (Parrett et al., 

1993). Due to an average precipitation of one and one-half to two times normal 

-normal precipitation for 1961 to 1990- during the period from January to July 

1993, the soils were completely saturated and all incoming rainfall simply 

became direct runoff. Ames, located near the basin outlet, experienced 

unprecedented flooding. Total economic loss within the community was 

estimated to be over $10 million (Snyder & Associates Inc., 1996). The 1996 

flood was not as severe as the 1993 flood, either in terms of damage to homes 

and businesses, or damage to public facilities (Hoffman, 1996). Nonetheless, 

total damage was estimated to average $1.4 million. 

3.3. Summary of past efforts in flood mitigation 
Faced with the risks of flash flooding, the City of Ames has been actively 

involved in finding ways to mitigate flooding consequences. Federally 

sponsored public works were therefore considered. In the late 40s, the Rock 

Island District of the US Army Corps of Engineers studied potential flood 

control measures in the Skunk River Basin, including the Squaw Creek basin 

(US Army Corps of Engineers, 1971). Two reservoirs were proposed: one on 

Squaw Creek west of Gilbert, and the other on the Skunk River a few miles 

upstream from Ames. Strong opposition from local landowners forced 

abandonment of the projects. In the late 60s, they were re-examined and the 

reservoir on Squaw Creek was found to be economically justified on the basis of 

flood control benefits (US Army Corps ofEngineers, 1971). The project was, 

however, again abandoned because of strong local opposition. Due to renewed 

public interest, the Corps undertook a reevaluation report exploring 

alternative measures of flood control in the Squaw Creek basin (US Army 

Corps of Engineers, 1987). Opposition from the Iowa Department of Natural 

Resources, the City of Ames, and local residents led to definitive closure of 

public works projects within the area. 
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The City of Ames then turned to other alternatives. A study of Squaw Creek 

and Skunk River Basin floodplains by the US Army Corps of Engineers Rock 

Island District helped determine flood-prone areas (US Army Corps of 

Engineers, 1966). It eventually led to the development of floodplain zoning 

ordinances for regulation and use of the floodplain within the city limits (City 

of Ames, 1975). Flood damage reduction features, such as earthen berms, 

elevated entrances, and major under drainage systems were incorporated in 

the construction of the Iowa State Center Complex and Iowa State university 

dormitories in the 70s. Other flood control structures were put in place to try 

and channel flood flows away from property adjacent to Squaw Creek. Elwood 

Drive, a major north-south artery in Ames, was constructed at a higher 

elevation so as to serve as a levee during flooding events. In spite of these 

projects, important damages are still being sustained within these areas. 

During the flood of 1993 for instance, the Hilton Coliseum was heavily 

damaged when water filled up to the first row of parquet-level seats. 

There are three areas in Ames that are primarily prone to major flooding 

damage. The multi-million dollar Iowa State Center Complex, with several 

buildings and extensive parking facilities, is one area of high risk. The 

commercial and business area along South Duff Avenue, southeast of the city, 

poses another threat. Residential areas along South Riverside, South Russell, 

South 4th and South 5th streets, south of the city along the creek, are also part 

of the flood prone zone. Development in the Squaw Creek floodplain has not 

been halted by the past flooding events. It actually seems to intensify with the 

construction of new residential apartments and business and commercial 

buildings. Over the past 30 years, several Iowa State University facilities have 

been constructed including housing (Snyder & Associates Inc., 1996). There 

has also been an increase in concentration of commercial development along 

South Duff Avenue. The potential for increased damage from a possible 

disastrous flooding event seems to be growing. The City Officials are thus 

exploring all possible flood mitigation alternatives. 

In order to reduce the impacts of flooding, the City of Ames has set up a 

flood prediction and warning system (Grosskruger, 1993). In the event of a 

flooding situation, a precise plan of action takes place. Water Plant personnel 

monitor streamflow on Squaw Creek as well as precipitation amounts. If the 

water level reaches 1.8 m, is rising at 0.15m/hr, and at least 5 cm/hr of rain 
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are falling, the Police notifies the City Disaster Response Team. Police are 

sent to the residential flood prone areas to conduct a door-to-door warning of 

the impending flooding. Business owners are telephoned. Sand bags and 

sand are provided in key areas. The Public Works Department takes care of 

traffic measures. Fire personnel can assist in the evacuation of local 

residents. Local Utilities disconnect power and gas lines if necessary. The 

Red Cross can also provide emergency shelter. Police also provides security 

for damaged properties, if any. 

Despite the existence of this flood response strategy, City of Ames officials 

have been feeling uncomfortable with the flood prediction system. Public 

skepticism can arise when actual water levels are far short of predictions and 

result in a lack of action during an actual disaster event. Accurate and rapid 

forecasting within the Squaw Creek basin is needed. What was missing was a 

flood forecasting system. The NWSRFCs generate flow forecasts using 

operational hydrologic models for some specific locations along major rivers 

(Shedd and Fulton, 1993). Squaw Creek represents only a portion of the Skunk 

River Basin and is not classified as a major river. Hence, there is no flood 

forecasting available from the NWSRFC. Glanville (1987) developed a micro­

computer based flood prediction model for the Squaw Creek basin based on the 

US Army Corps of Engineers Hydrologic Engineering Center's HEC-1 model. 

His model predicts the time of peak and peak discharge for large flood events. 

It was revised, verified and slightly modified in 1996-1997 (Tebben, 1997). This 

model, however, can only be as accurate as the data fed into it. Although the 

current network of telemetered rain gauges (Tebben, 1997) placed within the 

basin seems satisfactory under a well-distributed rainfall pattern, it may prove 

to be inadequate in providing representative rainfall intensities under intense 

convective storm events. This would, in turn, cause inaccurate predictions on 

peak discharge and time to peak. Radar data, on the other hand, with its 

spatial and temporal characteristics of rainfall measurement (Appendix B), 

could represent a great asset in the flooding prediction operations. 
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CHAPrER4.MODELDEVELOPMENTAPPROACH 

HEC's ModClark computerized procedure is a new modeling approach that 

uses WSR-88D weather-radar NEXRAD data as distributed input to rainfall­

runoff modeling (Hydrologic Engineering Center, 1995b). It is part of the HEC 

Hydrologic Modeling System (HEC-HMS), which is the Hydrologic 

Engineering Center's "next generation" software for precipitation-runoff 

modeling (Feldman, 1995 and 1996; Peters, 1995). The usual approach to 

rainfall-runoff simulations is the application of the unit hydrograph theory, 

developed in the early 30's (Clark, 1943; Bedient and Huber, 1989). 

Traditionally, this approach involves using spatially-averaged (lumped) values 

of basin rainfall and losses . Such values are commonly collected from 

raingage networks, which are generally sparse and provide a limited 

definition of the spatial variation of basin rainfall. Compared to this lumped 

approach, WSR-88D radars, on the other hand, have the capability to estimate 

the spatial distribution of rainfall, which brings in the possibility of using 

distributed rainfall for modeling. 

One logical way to use radar data would be to subdivide the basin according 

to the gridded rainfall definition and run simulations at this level. However, 

this would result in a tremendous increase in the number of model 

parameters that would need to be determined. This approach would probably 

only be useful in some particular cases where parameters' spatial variability 

is large, or if a high resolution of runoff calculations is needed. Performing 

modeling with distributed rainfall input can be done in a simpler manner, 

without further subdividing existing basin representations and increasing 

runoff parameter information. This is what HEC has been developing. This 

simpler approach is an adaptation of Clark's unit hydrograph method to 

accommodate spatially distributed rainfall data (Hydrologic Engineering 

Center, 1995b). 

Clark's work was centered around two main objectives (Clark, 1943). The 

first was to better define the inherent relationship between the unit 

hydrograph and flood routing. The second was to utilize this relationship to 
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derive accurate unit hydrographs. His goals were that the synthesized unit 

hydrograph would reflect the influence of the shape of the drainage area, that 

the time elements of the unit hydrograph would reflect the storage capacity of 

the streams, and that his standardized calculation procedure would yield 

similar results when used by different people. Clark's technique was the first 

time-distributed synthetic unit hydrograph method (Kull and Feldman, 1998). 

It involves the application of an instantaneously applied unit of rainfall excess 

over a watershed. In his model, Clark employs two components: (1) a 

translation hydrograph to reflect the travel (lag) time required for one unit of 

rainfall excess (occurring instantaneously) to reach the basin outlet, and (2) a 

linear reservoir to represent natural storage effects (Clark, 1943). Figure 4.1 

illustrates Clark's conceptual model. The translation hydrograph is used to 

reflect the surface runoffs time of travel. To develop it, the instantaneous unit 

of excess precipitation is lagged based on isochrone-delineated segments (lines 

of equal travel time) to the outlet, creating a time-discharge histogram. Linear 

reservoir routing is then used to reflect stream channel storage attenuation 

effects. The routing yields an instantaneous unit hydrograph (IUH). The IUH 

can be used to develop a unit hydrograph for any desired time step. This is 

done by averaging a series of IUHs lagged over the desired time interval. The 

two parameters of the Clark method are the time of concentration Tc (time base 

of the translation hydrograph) and the storage attenuation coefficient of the 

linear reservoir R. Both parameters have units of time. The time of 

concentration, Tc, is conceptualized as the time it takes for rainfall excess from 

the hydraulically most remote point of the basin to reach the outlet. It is a 

measure of lag due to time-of-travel effects without regard to storage effects. 

Unlike Tc, the storage attenuation coefficient R cannot be discerned simply by 

analyzing the physical characteristics of the watershed. R is a measure of lag 

due to natural storage effects. 

In the HEC adaptation of the Clark conceptual model, the modified Clark 

method (ModClark), WSR-88D radar grid cells are superposed on the basin 

(Hydrologic Engineering Center, 1995b). The NEXRAD rainfall cell is 

considered as the basic modeling unit. Rainfall and losses are tracked 

uniquely for each cell. To transform rainfall excess into runoff, the modified 

Clark method proceeds the following way (Hydrologic engineering Center, 

1995b; Kull and Feldman, 1998; Peters, 1995; Peters and Easton, 1996): 
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1) Translation of rainfall excess (lag) on a cell basis by using the travel time 

of the cell (use of TJ; 

2) Routing of the lagged rainfall excesses through a linear reservoir (use of 

R). 

The methodology of ModClark is illustrated in Figure 4.2. Rainfall excess 

is computed for each cell using the rainfall and watershed data. Each cell's 

excess is then lagged to the basin outlet according to the cell's travel time. 

Next, individual lagged cell outflows are routed through a linear reservoir 

using R. The routing is identical to the one used in Clark's original method. 

The lagged and routed outflows are then summed. Baseflow is added, and the 

basin's outlet hydrograph is produced. 

The travel time for a cell is determined using: 

tl 
tr =Tc , where: 

tzmax 

t;; =travel time from the cell to the basin outlet (translation lag) 

Tc =basin Clark time of concentration 

t 1 = travel time index for the cell 

t 1mx =maximum of the basin cells' travel time index. 

The translation lag is computed using the travel time index for the cell. 

The definition of the travel time from a cell to the basin outlet is: 
D 

T=-, where: 
v 

T = travel time from the cell to the basin outlet 

D =length of the flow path to the basin outlet 

V = average flow velocity over the flow path. 

The ModClark model is based upon the assumption that flow velocity is 

constant over a basin. Therefore, flow path length can serve as the cell travel 

time index. This information, for each cell, is calculated and confined in a 

Grid Cell Characteristics File generated by the HEC GIS GridParm procedure 

(Hydrologic Engineering Center, 1996b). From a DEM for the watershed and 

the application of an 8 direction pour algorithm, the flow path length is 

computed by summing the lengths of all segments along the path from the cell 

to the basin outlet. Cell area is also determined for DEM-based cells at a 

resolution of 100 m. Radar cells from the NWS HRAP grid are superposed. 

Their area and travel time indices are calculated by summing the areas and 
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averaging the travel time indices of the encompassed DEM-based cells. These 

final grid cell values are considered to be constants for the basin. 

Once precipitation excess for each cell is lagged to the basin outlet by the 

cell's travel time, it is routed through a linear reservoir according to the 

following equation: 

O; =[R+~(t.t)}av +- R+~~(M)]oi-1, where 

O; =direct runoff at time I 

R = Clark storage attenuation coefficient 

Iav =average inflow for the time i-1 to i 

~ t =time interval 

oi-1 =direct runoff at time i-1. 

These data are then utilized by ModClark. To simulate runoff from an 

individual basin for which grid-based hourly rainfall data is provided, 

infiltration and baseflow data are also necessary (Hydrologic Engineering 

Center, 1995b). As with the Clark parameters and the Grid-Cell 

characteristics file, they are entered as input within the HEC-HMS Basin 

Model set of data (Hydrologic Engineering Center, 1998). Subbasin loss 

parameters apply to all cells in the subbasin, but losses are calculated 

individually for each cell based on the rainfall intensity associated with that 

cell. The hourly NEXRAD radar rainfall data is pre-formated with the 

GridLoadhdp HEC program and stored in the HEC-DSS format for retrieval by 

ModClark within HMS. 

ModClark's generated subbasin runoffs are then routed within HEC-HMS 

to obtain the whole basin runoff hydrograph. Necessary data for routing and 

combining flows are supplied to HMS with the Basin Model data set 

(Hydrologic Engineering Center, 1998). 
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CHAPTER 5. OBJECTIVES OF THE STUDY 

The goal of this particular Squaw Creek watershed study was to develop 

and implement HEC's new rainfall-runoff modeling procedure in the Squaw 

Creek watershed using NEXRAD rainfall radar data. 

The specific objectives of the study were: 

1- To develop the ModClark rainfall-runoff model for the Squaw Creek 

drainage basin; 

2- To assess the accuracy of the Mod Clark model performance by 

comparison between NEXRAD radar data input, raingage data input, and 

actual streamflow; 

3- To begin the model calibration. 
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CHAPIBR 6. DEVELOPMENT OF THE MODCLARK MODEL 

6.1. Subbasins, flow routing and combining definition 

Glanville (1987) divided the Squaw Creek basin into thirteen subbasins 

based on drainage data obtained from USGS topographic maps and drainage 

district maps. Tebben (1997) brought a small modification to the subdivisions 

for her study, and created two extra subbasins (Figure 6.1). 

For the development of the Mod Clark model, the location of the two City of 

Ames and the USGS streamflow gages was given particular attention. 

Consultation with HEC (Troy Nicolini and John Peters, personal 

communication, 1997) led to the division of the watershed into three sub basins 

as most appropriate. The presence of these three gages corresponding to three 

subbasin outlets would enable future flood flow forecast comparisons between 

the ModClark model predictions and the streamflow gage data, which could be 

particularly useful in real-time mode. In addition, it was deemed necessary to 

eliminate the most southern sub basin of the original subdivision because of its 

location south of the USGS stream gage. Tebben's defined fifteen subbasins' 

division with its associated original drainage patterns was used in this study 

for the determination of some of the model parameters. The delineation of the 

watershed and subwatersheds' boundaries was further defined using GIS (see 

ModClark Grid-Cell Characteristics input file development) and is indicated 

further in Figure 6.9. 

The location (latitude and longitude) of the 3 subbasins' outlets (gages) was 

determined from United States Geological Survey (USGS) 7 .5 minute 

topographic quadrangle maps (Table 6.1). The flow routing schematic had to 

be redone, taking into account the new basin configuration. Flow routing and 

combining flow nodes are indicated in Figure 6.2. Subwatershed A runoff flow 

is routed downstream to the subwatershed B outlet and combined with the 

runoff flow from subwatershed B at this point. This flow is then routed to the 

watershed outlet and combined with the subwatershed C runoff flow. 
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Figure 6.1. City of Ames' HEC-1 model current subbasin division for the 

Squaw Creek watershed (reprinted from Tebben, 1997, p .21) 



www.manaraa.com

37 

Table 6.1. Location of Squaw Creek subbasins' outlets for the ModClark model 

Name 

Subbasin A 

Subbasin B 

Subbasin C 

6.2. Estimation of Clark parameters 

Latitude 

42°09'59" 

42°04'14" 

42°01'14" 

Longitude 

93°45'11" 

93°40'21" 

93°37'49" 

Several methods were attempted for the determination of the Clark time of 

concentration, Tc, in each of the three subbasins of the Squaw Creek 

watershed. A regional regression analysis was performed in the first place. 

This technique involves correlating Tc with physical basin characteristics such 

as drainage area, watercourse slope, or watercourse length. Based upon the 

original subdivision into fifteen subbasins in the City of Ames' HEC-1 model 

(Tebben, 1997), average channel slope was determined in each subcatchment. 

Measurements were made on USGS topographic maps at 1:24,000 covering the 

study area using the following formula (Lara, 1973): 

S = Es5 - E10 where: 
av 0.75L ' 

sav = basin average slope, in ft/mi 

E85 = elevation of channel at a location 0.85L upstream from the basin 

mouth, in ft 

E 10 =elevation of channel at a location O.lOL upstream from the basin 

mouth, in ft 

L =length of channel, in mi 

Drainage area and SCS dimensionless unit hydrograph lag time for each of 

the fifteen subbasins were obtained from existing data (Tebben, 1997). 

Programs were written in SAS (Statistical Analysis Package) language and 

run in the SAS system to perform a regional regression analysis using values 

of drainage area, channel length, average channel slope and time lag. The 

goal was to develop an equation allowing the computation of the time lag. 

Several different combinations of the independent variables were tried, 

including a regression analysis of only drainage area and channel slope 

(Holder, 1985; Kleinbaum and Kupper, 1978). None of the equations obtained 

through either linear regression or multiple linear regression was judged 



www.manaraa.com

38 

A 

Basin outlet 

B 

c 
C::> Subbasin runoff computation 

'T' Flow routing 

~ Combination of flows 

Figure 6.2. Flow routing and combining schematic for the Squaw Creek 

watershed ModClark model 
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satisfactory in terms of the time lag value given for each of the three sub basins 

of the Mod Clark model. Subsequent use of HEC-1 (Hydrologic Engineering 

Center, 1990) in optimization mode for transforming the lag values into Clark 

times of concentration was out of the question. 

A second method was thus used to determine the Clark parameter Tc. It is 

well known in the hydrology field as the TR-55 method and uses an analysis of 

physical basin characteristics (Soil Conservation Service, 1986). This 

procedure allows to calculate the time of concentration and travel time in a 

drainage area. It is based upon the assumption that water moves through a 

watershed as sheet flow, shallow concentrated flow and open channel flow. 

Travel time is the time it takes water to travel from one location to another in a 

watershed. It is a component of the time of concentration, which corresponds 

to the time for runoff to travel from the hydraulically most remote point of the 

watershed to a point of interest within the watershed. The TR-55 method is 

based on the fact that the time of concentration is computed by summing all 

the travel times for consecutive components of the drainage conveyance 

system. Sheet flow in the headwater of streams is flow over about 300 ft plane 

surfaces in the proximity of the basin divide. Manning's kinematic solution is 

used to compute the travel time: 

0.007(nL)0·8 

Tt = (P2 )0.5 (s)0.4 'where: 

Tt = travel time, in hr 

n = Manning's roughness coefficient 

L = flow length, in ft 

P 2 = 2-year, 24-hour rainfall, in in 

s = slope of hydraulic grade line, in ft/ft 

Manning's roughness coefficient was obtained from a TR-55 table. P 2 was 

estimated from the Weather Bureau Technical Paper 40 (Hershfield, 1961). 

Values of Lands came from measurements on USGS topographic quadrangle 

maps at 1:24,000. 
After a maximum of 300 ft, sheet flow becomes shallow concentrated flow 

(Soil Conservation Service, 1986). The average velocity for this flow is a 

function of watercourse slope and type of channel. A TR-55 figure is designed 
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to determine such a value. For slopes less than 0.005 ft/ft, the following 

equation for an unpaved surface is: 

V = 16.1345(s)0·5 , where: 

V = average flow velocity, in ft/s 

s = watercourse slope, in ft/ft 

Travel time for the shallow concentrated segment is then computed from: 

T, - L 
t - 3600V ' where; 

Tt = travel time, in hr 

L = flow length, in ft 

Flow length and watercourse slope were measured on USGS topographic 

quadrangle maps. 

Open channels are supposed to begin where channels are visible on aerial 

photographs, or where blue lines (indicating streams) appear on USGS 

quadrangle sheets. Manning's equation is used to estimate the average 

channel flow velocity (for full bank elevation): 

1.49(r)% (s)h 
V = , where: 

n 

V = average flow velocity, in ft/s 

r = hydraulic radius (equal to a/P w), in ft 

a = cross sectional flow area, in ft2 

P w = wetted perimeter, in ft 

s = channel slope, in ft/ft 

n = Manning's roughness coefficient for open channel flow 

Manning's n value was obtained from a standard hydrology textbook (Chow 

et al., 1988). Estimates of channel geometry in the Squaw Creek watershed 

were based on previous data (Glanville, 1987). Channel slope and flow length 

were measured on USGS topographic quadrangle maps. Using average flow 

velocity, travel time was then computed with the same equation used with the 

shallow concentrated flow segment. 

The TR-55 method was applied individually to each of the three sub basins of 

the Modclark model. The most remote tributary was used for the computation 

of the time of concentration, considering each sub basin as a whole basin in 
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itself. Most tributaries in the Squaw Creek watershed show some intermittent 

portions. During rain events leading to floods, these intermittent parts become 

full. Therefore, the total length of the creek water system used in the channel 

flow computations included both intermittent and permanent portions. 

Intermittent creek portions were also assumed to have a smaller cross 

sectional area than permanent ones. Both were treated separately for the 

channel flow computations. Stream flow length used for these calculations 

ended at the boundary of the original subbasin (City of Ames configuration) 

containing the most remote tributary in question. Starting from that point, the 

travel time of the flow, down to the sub basin mouth, was represented by the K 

value (in hr) of the Muskingum routing previously developed by Tebben, 1997. 

In the Muskingum method, a commonly used hydrologic river routing, the K 

coefficient, is the time of travel of the flood wave through the channel reach 

(Chow et al., 1988). For subbasins Band C, this value was reduced to the 

corresponding length of the main channel after the tributary joining point. 

The overall estimate of the time of concentration for each sub basin was then 

obtained by adding values of travel time for each of the different components of 

flow. Results are indicated in Table 6.2. 

Table 6.2. Clark time of concentration for the Squaw Creek subbasins 

Sub basin 

A 

B 

c 

Time of concentration (hrs) 

13.1 

12.8 

10.5 

To develop estimates of the Clark storage coefficient, R, existing data from a 

study done by the US Army Corps of Engineers Rock Island District in the 

Squaw Creek watershed was used (US Army Corps of Engineers, 1987). This 

report was a general reevaluation study in which alternatives to the 

withdrawn Ames Lake project were being explored starting in 1984. Smaller 

reservoirs, levees, non-structural methods, soil conservation practices and 

channel modifications were considered. In particular, interior drainage 

within the Squaw Creek basin was studied. Unit hydrographs for several 

interior basin areas were computed with the HEC-1 flood package (Hydrologic 

Engineering Center, 1990) using the Clark unit hydrograph technique. Clark 
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parameters were thus developed for these areas. Based upon the fact that the 

ratio of R/(Tc + R) is relatively constant within a basin, the following value was 

adopted (Hydrologic Engineering Center, 1990; Thomas and Benson, 1970; Troy 

Nicolini, personal communication, 1997): 

R = 0.43 
Tc +R 

For each subbasin of the ModClark model, Tc was replaced by its value found 

earlier and the equation solved for R. Reasonable estimates of R were thus 

obtained (Table 6.3). 

6.3. Determination of other basin rainfall-runoff parameters 
6.3.1. Basin and subbasin areas 

Squaw Creek basin and subbasin areas were obtained in two different 

fashions: from the work done on the existing City of Ames' HEC-1 model, and 

from the GIS basin and subbasin delineation procedure (see ModClark Grid­

Cell Characteristics input file development). The areas obtained with both 

procedures are indicated in Table 6.4. 

Table 6.3. Clark storage attenuation coefficients for the Squaw 

Creek subbasins 

Sub basin 

A 

B 

c 

Storage attenuation 

constant (hrs) 

9.9 

9.7 

7.9 

Considering the published drainage area for the USGS Ames streamflow 

gage for Squaw Creek of 528.36 km2 (Slack et al., 1993), the decision was made 

to use the non-GIS areas. The flatness of the terrain makes it difficult to 

evaluate such drainage areas with a lot of accuracy. The difference between 

the numbers is therefore not great. HEC-HMS's technical features are also 

designed to deal with such differences during the simulations using a GIS­

derived Grid-Cell Characteristics file. 
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6.3.2. Loss rate parameters 

Abstractions, or losses, correspond to the difference between an observed 

rainfall hyetograph and its associated excess rainfall hyetograph. Losses are 

primarily water absorbed by infiltration into the soil, with some allowance for 

interception of precipitation on vegetation above the ground, and depression 

storage on the ground surface as water accumulates in hollows over the 

surface. Interception and depression are assumed to be negligible in a large 

Table 6.4. Comparison of areas obtained from the HEC-1 model and from the 

GIS basin analysis (in km2) 

Sub basin 

A 

B 

c 
Total 

HEC-1 model 

223.90 

194.80 

101.40 

520.10 

G IS analysis 

229.99 

208.28 

102.93 

541.20 

storm (Chow et al., 1988). The Soil Conservation Service (currently the Natural 

Resources Conservation Service) has developed an empirical method for 

computing abstractions from storm rainfall. The agency has been able to 

relate drainage characteristics of soil groups to a curve number, CN. The CN 

is a function of the ability of soils to infiltrate water, land use, and the soil 

water conditions at the start of a rainfall event (Antecedent Moisture 

Conditions, AMC). Because estimates of CN are easily obtained from SCS 

published tables using soil type and land use data that are readily available for 

most watersheds, the SCS method has always been used in the Squaw Creek 

basin modeling work. CN values have been established on the basis of most 

soils comprised in the B hydrologic soil group with row crops as the major 

land use pattern, which is typical of soils in midcentral Iowa (Glanville, 1987; 

Tebben, 1997). The SCS loss rate method was thus used here as well. 

For modeling purposes, the precipitation loss was considered to be a 

subbasin average value, assumed to be uniformly distributed over the entire 

subbasin. Values from the lumped HEC-1 model developed for the City of 

Ames could then be used. Research work by Tebben (1997) has indicated that, 

most of the time, a CN associated with an AMC between AMC II (normal 

conditions) and AMC III (wet conditions) more closely matches the HEC-1 
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predicted flows with the observed ones. It is possible to use a CN 

corresponding to AMC II.5 because AMC and CN represent the physical 

reality of soil moisture. True soil moisture content is not easily represented by 

discrete values. At any given time, actual moisture conditions could fall 

somewhere between the values given for any discrete designation. Midcentral 

Iowa, where the Squaw Creek watershed is located, is characterized by low 

average precipitation from November to March because of a predominance of 

cold dry winds from continental Canada (National Oceanic and Atmospheric 

Administration, 1998). The period of April to August sees most of the annual 

precipitation. Evapo-transpiration is low in winter and highest in July and 

August (National Climatic Data Center, 1995). Soils that are soaked with 

moisture during winter are thus prone to a lot of surface runoff when the 

raining season starts in April. The majority of surface runoff occurs during 

the period of May to July. Using SCS CN values for modeling that correspond 

to AMC between II and III is therefore adequate. They were used both in the 

lumped model runs using raingage data and in the distributed ModClark 

model runs. For the latter runs, loss parameters apply to all cells in the 

subbasin, but losses are calculated individually for each cell based on the 

rainfall intensity associated with that cell. Values for the three ModClark 

model subbasins were obtained from an averaging of values of the original 

Squaw Creek basin subdivision (Troy Nicolini, personal communication, 1997). 

They are indicated in Table 6.5 for different AMCs. 

Table 6.5. Squaw Creek ModClark model subbasin SCS curve numbers 

Sub basin AMC I AMC 1.5 AMC II AMC II.5 AMC III 

A 63 72 80 86 91.5 

B 62 71 79 85 91 

c 60.5 69.5 78 84.5 90.5 

6.3.3. Runoff transformation parameters 

Runoff transformation parameters allow the transformation of 

precipitation excess to direct runoff using a unit hydrograph. For the 

development of the model for Squaw Creek, the unit hydrograph was specified 

in terms of parameters defined by Clark, Tc and R, for the simulations using 
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raingage data as input. Estimated values of these parameters are indicated 

under "Estimation of Clark parameters". These values were also used for the 

treatment of basin runoff as quasi-distributed when using NEXRAD radar 

data in the simulations. For such gridded precipitation input, the ModClark 

procedure also requires the specification of a cell parameter file for the 

development of the basin direct-runoff hydrograph (see ModClark Grid-Cell 

Characteristics input file development). 

6.3.4. Baseflow parameters 

Total streamflow is generally divided into two parts: direct runoff, and 

baseflow. A stream carries baseflow during most of the year and it comes 

from the groundwater. This subsurface flow comes from rainfall infiltrated 

into the basin that reaches the stream. Subsurface flow from groundwater 

usually accounts for flow in a channel during periods of little or no rainfall. 

Looking at low flow seven day data for a recurrence interval of ten years for the 

period of June to July for Squaw Creek indicated that values range between 

0.07 and 0.002 m 3/sec (Lara, 1979), which represents a very small flow . 

Groundwater accretion from any storm is released over an extended period of 

time. Therefore, a particular storm contributing to direct runoff is not directly 

concerned with the baseflow. Baseflow contributions can be considered 

minimal for areas where there is low infiltration (Bedient and Huber, 1989). 

The Squaw Creek watershed's dominant land use is row crops, over which the 

infiltration rate is not the highest. Ames' urbanized area can also be classified 

as mainly impervious. For large storm events, direct runoff will completely 

dominate the peak of the hydrograph and baseflow contribution becomes 

unimportant (Bedient and Huber, 1989). The baseflow value for all the 

simulations for Squaw Creek was thus set to be zero since it is negligible. 

6.3.5. Routing parameters 

Hydrologic routing deals with the movement of a flow wave down a channel 

and the associated change in timing or attenuation of the wave. As the wave 

passes through a river reach, the peak of the outflow hydrograph is usually 

attenuated and delayed due to channel resistance and storage capacity 

(Bedient and Huber, 1989; Chow et al., 1988). The Muskingum method is a 

commonly used hydrologic routing method for handling a variable discharge-
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storage relationship. This method models the storage volume of flooding in a 

channel by a combination of wedge and prism storages. During the advance of 

a wave, inflow exceeds outflow, resulting in a wedge of storage. During the 

recession, outflow exceeds inflow, resulting in a negative wedge. There is also 

a constant prism of storage. The volume of prism storage is equal to KQ, 

where K is a proportionality coefficient, and the volume of wedge storage is 

equal to KX(I-Q), where Xis a weighting factor having the range 09C~0.5 . 

Total storage is the sum of both components: 

S =[XI+ (I - X)Q] , where: 

S = channel storage 

I = inflow rate 

Q = outflow rate 

K = Muskingum storage time constant 

(time of travel of flow wave through channel reach) 

X = Muskingum weighting factor 

Glanville (1987) developed values for the Muskingum parameters Kand X 

for the Squaw Creek basin. They were also used by Tebben (1997) in her 

modeling work. It was thus decided to use the Muskingum routing method for 

the modeling of Squaw Creek with the ModClark procedure. Values of the 

parameters for the three subbasins were derived from the existing data and 

are indicated in Table 6.6. For routing purposes, HMS requires the 

specification, like in HEC-1, of a number of subreaches (Hydrologic 

Engineering Center, 1990; Hydrologic Engineering Center, 1997). The number 

of subreaches corresponds to the travel time divided by the time interval of the 

input rainfall data. 

Table 6.6. Muskingum routing parameters for the Squaw Creek ModClark 

model 

Reach From To Su breaches Routing 

parameters 

K x 
1 Subbasin A Subbasin B 4 4.4 0.2 

outlet 

2 Subbasin B Basin outlet 4 4.3 0.2 
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6.4. Development of the HMS schematic for the basin 

HMS's modeling concept revolves around a specific basin schematic for the 

watershed in question (Hydrologic Engineering Center, 1998). A basin model 

consists of hydrologic elements connected with each other following defined 

rules. Seven types of hydrologic elements are available: subbasin, river reach, 

junction, reservoir, diversion, source, and sink. For the development of the 

HMS schematic for the Squaw Creek basin, only the subbasin, river reach, and 

junction elements were needed. In HMS's modeling approach, a subbasin is 

an element that produces a discharge hydrograph at its outlet. A river reach 

is conceptually a linear element for which there is a known discharge 

hydrograph at its upstream end, and which produces a discharge hydrograph 

at its downstream end. A junction is a location where two or more inflow 

hydrographs are added together to produce an outflow hydrograph. The HMS 

basin schematic for the Squaw Creek watershed is presented in Figure 6.3. 

The basin schematic can include a map background showing basin and 

subbasin boundaries, and the stream system. HEC-HMS has the ability to 

display this background map on the basin schematic screen. The data 

necessary to draw the map is stored in a text file and needs to be specified in 

the basin model before hydrologic elements are placed and connected to form 

the basin schematic. HEC has developed an automated method to aid in the 

creation of the background map. The method utilizes GIS techniques and 

requires Arc/Info, a specific macro, and the Unix system utility awk. To 

create the background map for the Squaw Creek HMS basin schematic, data 

sources included the GridParm output (see ModClark Grid-Cell 

Characteristics input file development) to form the subbasin boundary map, 

and the stream USGS joined DLGs output (see ModClark Grid-Cell 

Characteristics input file development) to form the stream map. The map 

background can be seen on Figure 6.3. 

6.5. Raingage weights and temporal distribution determination 
Four NWS raingages are located in or within kilometers of the Squaw 

Creek basin: Ames 8WSW (in the basin), Ogden, Story City, and Webster City. 

Hourly precipitation data is available for these gages from the National 

Climatic Data Center monthly publications. Such data have previously been 

used by Glanville (1987) and Tebben (1997) in their modeling work. To obtain 
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Figure 6.3 . Squaw Creek basin HMS schematic and background map 
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an average storm precipitation for each basin, they both calculated an areally 

weighted average of measurements from these raingage stations. Areal 

weighting factors for each subbasin were determined from drawing a 

Thiessen net and calculating the area of influence for each gaging station in 

every subbasin. The Thiessen method that they used assumes that at any point 

in the basin, the rainfall is the same as that at the nearest gage so the depth 

recorded at a given gage is applied out to a distance halfway to the next station 

in any direction. The relative areal weights for each gage are determined from 

the corresponding areas of application in a Thiessen polygon network and the 

boundaries of the polygons being formed by the perpendicular bisectors of the 

lines joining adjacent gage stations. These values represent, for each 

subbasin, the polygon areas under the influence of each of the four gages. A 

new basin and subbasin definition having been adopted for the ModClark 

modeling purposes, the Thiessen raingage weighting factors had to be 

recalculated. The Thiessen net is shown in Figure 6.4, and the calculated 

raingage weights used for the simulations are indicated in Table 6.7. 

Besides the gage weighting, HEC-HMS's rainfall-runoff modeling 

approach requires the specification of the temporal distribution of the 

rainstorm data. Rainfall temporal distribution usually follows the one of the 

recording gage. In the case of the Squaw Creek basin, the four raingages are 

recording. Under such circumstances, the choice of the raingage "best" at 

reporting the temporal pattern of distribution of a rainstorm had to be made 

from a judgement based on the location of the gage and the general temporal 

distribution of this raingage for all storms (Troy Nicolini, personal 

communication, 1998). The Story City station was judged "best" and it was 

decided to distribute each storm rainfall in time using the temporal pattern of 

incremental rainfall data from that gage. A temporal distribution gage weight 

of 1 was thus used for the Story City gage, and 0 for the other gages for entry in 

the HMS basin model. 

6.6. ModClark Grid-Cell Characteristics input file development 
To develop the grid-cell parameter file for input to the ModClark model, 

HEC's GridParm procedure was used. This software is a set of procedures 

using Arc Macro Language (AML) and FORTRAN programs for evaluating 

ModClark runoff parameters for NEXRAD radar grid cells from USGS DEMs 
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Table 6. 7. Storm Thiessen raingage weights for the Mod Clark model 

Sub basin Webster City Ogden gage Ames 8WSW Story City 

gage gage gage 

A 0.303 0.1 0.006 0.591 

B 0 0.04 0.6 0.36 

c 0 0 1 0 

(Hydrologic Engineering Center, 1996b). It requires Arc/Info GIS Version 7.0 

or higher with the Grid module running on a Unix System, the Unix utility 

gunzip, and Internet access. Having a FORTRAN 77 compiler can also be 

useful when certain FORTRAN programs need to be corrected and recompiled 

to fit a different Unix platform. The ModClark parameters computed by 

GridParm include, for the whole basin, cell identification from the HRAP 

coordinates, cell area from the intersection of the NEXRAD grid with the 

watershed boundaries, and average flow travel length from cell to subbasin 

outlet. The major steps of the GridParm procedure are summarized in Figure 

6.5. DEM data is first processed so as to delineate the stream network. 

Watershed and subwatersheds are subsequently located. Values of hydrologic 

parameters are then calculated from the intersection of the set of watershed 

boundaries with the cells of the NWS precipitation-reporting grid. 

Prior to using GridParm, a number of system setups, including setting 

default paths and variable values, had to be performed in Unix for the sake of 

organization and workability, due to the large amount of data being generated 

during the procedure. 

REC provided Arc/Info coverages of the hydrologic unit maps covering the 

Iowa region at a scale of 1:250,000 (Figure 6.6). These data provide an excellent 

reference frame to approximate the spatial extent of data needed in a 

hydrologic study. The only method that GridParm provides for defining the 

limits of a study area is the selection of a hydrologic catalog unit. Hydrologic 

catalog units come from the USGS series of hydrologic unit maps, which 

present the boundaries, numerical codes, and names of river basins in the US 

(Seaber et al., 1987). Hydrologic units are identified by a unique code consisting 

of two to eight digits based on the four levels of classification in the Hydrologic 



www.manaraa.com

DEM data 

Format preparation 

Delineation of 
stream nenvork 

Identification of basin 
and subbasin areas 

52 

NEXRAD HRAP grid 

Derivation of grid cell hydrologic 
parameters for t.lJ.e ModClark 

rainfall-runoff model 

Procedure uses Arc/ Info GIS 

Figure 6.5 . HEC GridParm procedure 



www.manaraa.com

53 

i:: ...... 



www.manaraa.com

54 

Unit Code system (HUC): region (two digit), subregion (four digit), accounting 

unit (six digit), and catalog unit (eight digit). Catalog units represent the 

finest scale resolution of this HUC and corresponds to the smallest drainage 

areas. From an identification of the catalog unit containing the study area, the 

DEM quadrangles needed for the analysis were determined. The Squaw Creek 

basin is located within the catalog unit 07080105 (South Skunk) (Figure 6.7). 

Due to the small size of the watershed, it was determined that only one USGS 

DEM quadrangle was needed to cover the entire basin: Waterloo-West. It was 

obtained by file protocol transfer (ftp) over the Internet from the USGS EROS 

Data Center (EDC). A 1-Degree DEM, or 3 by 3 arc-second data spacing, 

provides elevation data coverage in a 1 by 1 degree block and has a grid 

resolution of approximately 90 m 2 (US Geological Survey, 1990). Two 1-Degree 

quadrangles provide the same coverage as a standard USGS lx2 degree map 

sheet at 1:250,000. Three arc-second DEMs are created by the Defense Mapping 

Agency and distributed free of charge by the USGS over the Internet. 

Extracting data from the DEM file, after decompression using the Unix 

gunzip utility, was the next step. In order to process digital elevation data for a 

hydrologic study, it must first be projected into a flat map coordinate system so 

that the coordinates are measured in units of distance rather than degrees. 

This is necessary because the GIS functionality for computing area, distance 

and slope depends upon the data being in a cartesian coordinate system. An 

equal-area projection is appropriate for hydrologic modeling because drainage 

area on the globe is preserved in the projected space. Precipitation depth­

volume relationships are then preserved (Reed and Maidment, 1995). An 

Arc/Info macro called "demload" was run to convert the data to a usable 

Arc/Info Grid format (Hydrologic Engineering Center, 1996b). After projection 

to an equal-area coordinate system (Albers equal-area conic projection), a new 

grid was created by the resampling of the elevation data from the original grid 

at 100 m spacing, which is common practice for data derived from 3 arc-second 

DEM. The 100 m cell grid was subsequently processed for removal of sinks 

which are cells having an elevation lower than surrounding cells. Sinks are 

errors in data due to the resolution of the data or the rounding of elevation 

numbers to the nearest integer value. Data resampling during the projection 

also creates artificial sinks. Sinks should be filled to ensure proper delineation 

of basins and streams. If they are not filled, a derived drainage network may 
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be discontinuous. The removal of sinks creates what is known as a 

"hydrologic" DEM. Arc/Info Grid functions were then used by the program to 

delineate the stream network. A flow direction and a flow accumulation need 

to be assigned to each grid cell. The Flowdirection function (8-direction 

algorithm) assigns a unique value to a cell indicating to which of its 8 

neighboring cells it will flow -assuming water can only flow in 1 of these 8 

possible directions (Figure 6.8). In the output grid, numbers are assigned 

according to the following convention: E=l, SE=2, 8=4, SW=8, W=16, NW=32, 

N=64 and NE=128. An output grid of flow directions, or flow direction grid, 

was then obtained. A drainage network was formed from this flow direction 

data, using the number of cells upstream of any given cell as the flow 

accumulation value. The Flowaccumulation function takes the flow direction 

grid obtained as input and computes for each output cell the cumulative total 

number of cells draining into that cell. A flow accumulation grid was then 

obtained. Cells with no flow accumulation are on the watershed boundary, 

whereas those with high flow accumulation value are considered to be stream 

cells. The stream network derived differs depending on the threshold value of 

flow accumulation used to identify streams, with a smaller threshold yielding 

a denser stream network. Here, cells collecting flow from 100 km2 or more 

were identified as stream cells to obtain the stream grid. 

From the information on the latitude and longitude of each of the three 

gages in the basin (Table 6.1), a data file containing these locations in decimal 

degrees was created. It was used by the Arc/Info macro called "demwsh" in 

the process of delineating the watershed sub basins. A point coverage of these 

outlet locations was generated and projected from geographic coordinates into 

the same Albers projection coordinate system as the DEM. To delineate 

basins, the outlet points needed to be grid cells that lie on the grid stream 

network. DEM-derived stream location and gage location did not correspond, 

primarily because they come from different data sources. To delineate 

watersheds correctly, the gage points must fall precisely on the gridded 

streams delineated from the DEM. Using the gage-location display of the 

program allowed for each subbasin outlet point location to be manually 

adjusted to the cell in the DEM-derived stream network closest to the gage 

location. A grid of the adjusted outlet locations was then created. To delineate 

a watershed for each stream reach, the cells at the downstream end of each 
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Figure 6.8. The 8-Point Pour Down Method: (a) Eight possible flow 

directions; (b) A grid of elevations; (c) Corresponding grid flow 

accumulation; (d) Resultant flow network with cell flow 

accumulations. (reprinted from ESRI, 1994) 

reach needed to be identified as outlets. Each of these outlet cells needed to 

have a unique value. IBtimately, the unique value for a given outlet would be 

assigned to all the grid cells in the watershed delineated from that outlet. 

Given the gridded stream network and the flow direction grid, the Grid 

function Streamlink produced an output grid of the stream network so that 

each cell in a given stream reach contained a unique value. From this grid 

and the grid of outlet locations, a new grid containing only the outlet points, 

each with its unique location attribute inherited from the gage outlet file, was 

generated by the program using the Grid Selectpoint function. Next, with the 

Grid Watershed function, the program identified areas that drain to the 

specified outlet points (the gages) by using the flow direction grid and the new 

gage location grid. Subwatersheds are defined by the program as cells that 

drain to the adjusted gage locations cells. A polygon coverage of the delineated 

watersheds was then generated from the grid of delineated watersheds for 
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subsequent use with the radar grid coverage. In Arc/Info, the development of 

the drainage network allows the possibility of measure of the flow distance 

from any cell in a subwatershed to the outlet of the subwatershed. The Grid 

function Flowlength was then used to compute, based on the flow direction 

grid and for each DEM cell in each subwatershed, the length along the 

drainage network to the subwatershed outlet. 

Finally, the "parmhrap" Arc/Info macro was run to create the ModClark 

parameter file. A rectangular grid of HRAP cells covering the study area was 

first created. The geographic coordinates for the corners of the cells were 

determined using a grid definition subprogram. This HRAP cell grid was 

then transformed into a polygon coverage in the Albers projection and overlaid 

on the delineated watershed and subwatershed boundaries polygon coverage. 

The resulting polygon coverage was then converted to a grid format for 

calculation of hydrologic parameters. These were calculated for each newly 

defined cell resulting from the overlay. The NEXRAD rainfall cell being taken 

as the hydrologic response unit, its properties were estimated by averaging the 

corresponding properties of the approximately 1600 DEM cells present within 

the rainfall cell. Using the Grid function Flowlength, the average travel flow 

distance from each cell center to the subbasin outlet was computed by the 

program by averaging the flow lengths of all DEM cells within the NEXRAD 

cell boundaries. Areas of the intersected polygons were obtained from the 

resulting polygon attribute table. The Grid-Cell Characteristics file containing 

the values of these parameters was then generated. 

A comparison of the stream delineation, obtained from the DEM with 

GridParm, with the RFl stream representation in the GIS data provided by 

HEC (Environmental Protection Agency (EPA) 1:500,000 Digital Line Graph 

(DLG) representation of stream systems in the US called River Reach Files 

(RFl)) showed some discrepancies. The errors were due to the DEM 

representation of a very flat topography like the one in central Iowa. In such a 

flat terrain, even the slightest elevation error can lead to a considerable change 

in the determination of flow directions by the program. Therefore, it was 

decided to manipulate the DEM before re-running the GridParm procedure. 

The purpose was to ensure proper stream locations so that the flow directions 

would be more accurate, hence resulting in a more accurate watershed 

delineation. 
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A procedure called a stream burn-in was therefore attempted. It used 

1:100,000 Digital Line Graphs (DLGs) stream network Arc/Info coverages from 

the Iowa Department of Natural Resources obtained by ftp over the Internet. 

These coverages represent a dense network of streams. The procedure 

consisted of overlaying the stream data onto the DEM. Any DEM grid cell 

which had a stream arc passing through it was then lowered by a certain 

elevation. From HEC's previous burn-in experience with the Muskingum 

River basin (Hydrologic Engineering Center, 1996c), it was known that a deep 

burn-in results in better stream location. The burn-in was thus attempted at a 

depth of 100 m to ensure that the channel system would be clearly defined. The 

manipulation was done in Grid in Arc/Info using the merged stream DLGs of 

Story, Boone and Hamilton counties. The combined DLG line coverage was 

then projected in Arc from its UTM coordinate system into the same 

coordinate system as the DEM: Albers. This ensured that both data sets could 

coincide for Arc/Info to align them correctly. The obtained burnt-in DEM 

coverage, with its sinks filled, was then used to re-run the GridParm 

procedure so as to obtain a new grid cell characteristics file. The programs 

were launched at the point of use of this data in the whole process. Because 

the dense stream network represented by the DLGs was able to "force" the 

previously errant contributing areas to flow in the proper direction, a 

satisfactory watershed delineation was obtained this time (Figure 6.9). The 

coverage resulting from the intersection of the HRAP cell grid with the 

watershed boundaries is indicated in Figure 6.10. This second version of the 

gridcell parameter file was retained for use in the ModClark model (see 

Appendix A). The output ASCII file lists, for each cell, the HRAP cell x and y 

coordinates (south west corner), the average travel distance from the cell 

center to the outlet, and the grid cell area, all grouped by subbasin. 
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Figure 6.9. Squaw Creek watershed and subwatershed delineation from 

DEM and DLGs using HEC's GridParm procedure 
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Figure 6.10. Squaw Creek watershed boundaries intersected with the NWS 

HRAP grid using HEC's GridParm procedure 
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CHAPTER 7. VERIFICATION AND ADJUSTMENT 

OF THE MODCLARK MODEL 

7.1. Approach 

To verify and test the ModClark model, historical precipitation data was 

used. Three rainfall events were chosen. For the Squaw Creek basin, the 

closest NEXRAD radar site is the one located in Johnston, IA, near Des 

Moines. The radar having been installed in 1995 (Karl Jungbluth, personal 

communication, 1997), the choice of historical events was restricted to after 

this date. For rainfall-runoff modeling with HEC-HMS, the intent was to 

choose rainfall events that are spatially varied (different raingages reporting 

different rainfall amounts), yet temporally centered (one major peak of 

rainfall) (Troy Nicolini, personal communication, 1997). 

The selection of events took these considerations into account. It began by a 

preliminary analysis of the flow data obtained from the USGS for the Water 

Year 1996 (see Streamflow data) and was followed by a study of the 

corresponding raingage data (see Raingage data). Consultation with the 

contact person at the NWS office in Johnston brought more information on the 

possible selected dates (Karl Jungbluth, personal communication, 1997). On 

June 16-17, 1996, flooding occurred in the Squaw Creek basin in Ames, 

following a heavy rainstorm. This event was therefore of interest. On July 16-

17, 1996, 51 to 76 mm of rain fell on the basin, with heavy rains in the 

southwest part of the drainage area. This event was also deemed interesting to 

use for testing the model. Following about 125 mm of rain over the basin, the 

NWS issued a flood warning on July 24, 1997, which was later found to be the 

result of an overestimation. This rainstorm was thus also selected. 

For each storm, the objective was to compare HEC-HMS simulation results 

obtained with gridded precipitation data input on one hand, with simulation 

results using raingage precipitation data input on the other hand. HMS runs 

with gridded rainfall data (quasi-distributed modeling) used ModClark as the 

runoff transformation method. Runs with raingage data (lumped modeling) 

utilized the Clark unit hydrograph method so as to provide a similar basis for 
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comparison. Results were also compared to corresponding observed 

streamflow data. 

An additional case event, the Flood of 1993, was chosen for study. The 

NEXRAD system was not in place at the t ime, so there was no possibility of 

testing the Mod Clark model using this historic flood. However, it appeared 

interesting to be able to verify the Clark lumped model for this event using 

raingage data. One underlying reason was the notoriously severe aspect of the 

Flood of 1993 (National Weather Service, 1994). Another reason was to test the 

ability of HEC-HMS to respond to storms that are temporally close to one 

another. The first half of July 1993 was studied because it is when flooding 

records were broken, causing extensive and unprecedented damage in Ames. 

Three consecutive rainfall events were recorded between July 8 and July 13 

and were modeled for flood prediction. 

7.2. Data acquisition and management 

7.2.1. Raingage data 

Early 1997, the City of Ames installed five raingages in the Squaw Creek 

basin, in an effort to improve its flood prediction system. Data from these 

gages was not available for the 1996 events. Data for the July 1997 event were 

retrieved using the archival system but presented many missing blocks of 

data, which prevented any reliable use for input to the Clark model here. All 

cases thus used NWS raingage data as input. Hourly raingage precipitation 

data for the four NWS raingages of interest for the Squaw Creek basin were 

obtained from monthly publications by the National Climatic Data Center 

(NCDC) (National Data Climatic Center, 1993, 1996b, 1996c, and 1997a). With 

the Utility Program DSSTS in HEC-DSS (Hydrologic Engineering Center, 

1995a), the raingage data corresponding to each storm was then used to create 

DSS data files for input to HEC-HMS. 

7.2.2. Streamfiow data 

Hourly streamflow data for the USGS stream gage No. 05470500 for Squaw 

Creek at Ames was obtained by ftp from the USGS Hydrologic Office in charge 

of the gage maintenance in Fort Dodge, IA, after consultation with the USGS 

headquarters in Iowa City, IA. The data was obtained in SHEF format 

(Standard Hydrologic Exchange Format) for the Water Year 1996, for July 
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1997, and for July 1993. Using a complex utility program, it was subsequently 

converted to DSS format by HEC for use with HMS. 

7.2.3. Radar data 

The acquisition of NEXRAD radar data was not as easy as the previous 

data, and turned out to be a quite problematic task. The NWS office in 

Johnston did not have NEXRAD data in digital format and could not procure it 

from the RFC in Minnesota, whose responsibility includes the Squaw Creek 

basin area. Contact with a weather products vendor company in Colorado 

indicated the possibility of purchasing a CD ROM containing hourly 

precipitation data. But this data originated from raingage readings and not 

from NEXRAD sites. An investigation of possible Internet sources of data led 

to the finding of archived level II NEXRAD data distributed by the NCDC for all 

existing NEXRAD sites in the US (National Climatic Data Center, 1997c). This 

hourly precipitation data is provided on 8 mm tapes. Through collaboration 

with the NWS office in Johnston, the level II data tapes corresponding to the 

chosen rainstorm dates were obtained directly from the NCDC. The Johnston 

team routinely uses a software package called WATADS to display Archive II 

data (Karl Jungbluth, personal communication, 1998). It however has no 

means of retrieving the data from tapes in digital format, which is what was 

needed for input to the model. Since HEC was better equipped in terms of 

software systems, it was then decided to ship the tapes from Iowa to California 

where HEC would examine how the data could be extracted. Investigation by a 

HEC specialist led to the conclusion that this archived II data could not be 

used. The format of the data was uncommon, and HEC had no software that 

could read the information on the tapes. Contacts between HEC and the NCDC 

in North Carolina were not helpful either, for NCDC does not have an 

operating software capable of converting tape II data into digital format. 

NEXRAD radar data is still a new type of data, and technology and uniformity 

of data have not yet caught up with it, especially from a modeling standpoint. 

Modeling with NEXRAD data is very uncommon in the US (see Chapter 2), 

which accounts for the great difficulty in locating and and obtaining such data 

in the digital format necessary for input to the model. 

An alternative solution was thus needed to get data. Based on the fact that 

hourly radar images can be printed with WATADS, it would be feasible to 
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produce such print outs for each hour of each selected rain event for the Squaw 

Creek drainage area. The NWS contact person in Johnston agreed to help 

with the procedure. Using a transparency of of the HRAP grid output over the 

basin obtained from the GIS application of GridParm, it appeared possible to 

superimpose it on each print out to make manual readings of precipitation for 

each cell. An input file of hourly radar precipitation data could then be created 

using the coordinates of each cell as identified in the grid-cell parameter file 

obtained with GridParm, and converted to a DSS format with the help of HEC. 

In the meantime, HEC succesfully contacted the RFC in Minneapolis, and 

found out it was possible to obtain Stage I NEXRAD radar data in digital 

format. This type of data was fine since HEC has devised a software called 

GridLoadhdp which is capable of reading level I and converting it into a DSS 

format. This was definitely a breakthrough in the process of obtaining radar 

data since the "manual" solution would have been long and tedious, though 

feasible. 

7.3. Event simulations and results 
The Modified Clark Runoff Simulation Program (ModClark) was originally 

developed as an individual program to simulate runoff from individual basins 

for which grid-based hourly rainfall data is provided (Hydrologic Engineering 

Center, 1995b). A complete basin-wide ModClark model required the 

additional use of HEC-DSS for NEXRAD data retrieval and storage of subbasin 

discharge hydrographs (Hydrologic Engineering Center, 1995a), and of HEC-1 

for routing and combining the flows (Hydrologic Engineering Center, 1990). 

The intention was to use ModClark in this context for the Squaw Creek basin 

model. During the research work, HEC's Research Division, which is 

working on the HEC NexGen project (see Chapter 4), came up with the first PC 

Beta version ofHEC-HMS. HEC-HMS has the capability to utilize gridded 

rainfall via the integration of ModClark in its technical features. HEC's 

Research Division then decided the Squaw Creek project would be a Beta tester 

for HEC-HMS, before the official release of the software. Different updates of 

the Beta version, followed by the official version 1.0 released in April 1998, were 

thus used for the simulations to test the developed Squaw Creek ModClark 

model. During the research work, different software malfunctions were 
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detected and reported to HEC. Using HEC-HMS for the Squaw Creek basin 

thus contributed to the improvement of this program. 

7.3.1. Model input and event simulation 

HEC-HMS provides a variety of options for simulating rainfall-runoff 

processes (Hydrologic Engineering Center, 1997). Unit hydrograph and 

hydrologic routing options are similar to those in HEC-1. Among the new 

capabilities is the addition of ModClark. HMS is comprised of a Graphical 

User Interface (GUI), integrated hydrologic analysis components, data storage 

and management capabilities, and graphic and reporting facilities. The GUI 

is used for the specification of basin components, input of data for the 

components, and viewing of results. HEC-DSS serves for the entry, storage, 

and retrieval of time series and gridded data. 

The basic framework for runoff simulation is similar to that in HEC-1, with 

computations performed in an upstream-to-downstream sequence. The 

execution of a simulation requires the specification of three sets of data. The 

first, labeled Basin Model, contains parameters and connectivity data for the 

hydrologic elements. The second set, labeled Precipitation Model, consists of 

meteorological data and information required to process it. The third set, 

labeled Control Specifications, specifies time-related information for a 

simulation. A run is configured with one Basin Model, one Precipitation 

Model, and one Control Specifications. 

Specific input files originally developed for use with the overall ModClark 

river basin analysis methodology were discarded because they could not be 

utilized in the HMS context, which is totally different. The values of the 

different parameters estimated for these input files were however retained. 

HEC-HMS rainfall-runoff simulations with raingage data input were done in 

a lumped mode. The methods used for loss rates calculation, precipitation 

transformation, and flow routing were the SCS CN, the Clark Unit 

Hydrograph, and the Muskingum routing, respectively. DSS data files of 

raingage precipitation and observed flow were also utilized. Simulations with 

Stage I radar precipitation data input were performed in a distributed mode. 

NEXRAD data being in Universal Coordinated Time (UTC), a time shift of 

minus 5 hours was applied so computations could be performed on a local time 

scale. SCS CN, ModClark, and Muskingum routing were the methods used 
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for loss rates, rainfall transformation, and flow routing, respectively. DSS 

data files containing gridded data and observed flow data were needed. The 

distributed mode also required the specification of a grid-cell parameter file 

developed using the GIS GridParm procedure. 

7.3.2. Results 

7.3.2.1. Lumped Clark model 

7.3.2.1.1. June 1996 flood event: 

For the June 16-17 1996 event, the AMC parameters to use in the model 

were set to AMC III, the wet soil condition. This was chosen after a review of 

climatological conditions in central Iowa since the beginning of the 1996 year. 

An unusual amount of snowfall in January resulted in an extensive snowmelt 

early spring (National Climatic Data Center, 1996d). In addition, the month of 

May was extremely and unusually wet (National Climatic Data Center, 1996a 

and d). In view of this data, AMC III conditions seemed most appropriate. 

Results from simulations with HMS for the June 1996 event predicted a 

peak flow of 317.14 ems on June 17th at 09:00 AM (Figure 7.1). According to the 

USGS rating curve for the streamflow gage at Squaw Creek on Lincoln Way in 

Ames (Appendix C), this discharge would result in a river stage of about 4.6 

m, which corresponds to flooding -- the flood stage being of 2.1 m (Appendix C) . 

The USGS streamflow gage failed during the event. The flow data obtained 

for these dates could however be used because they had been corrected with 

observer readings (Alvin R. Conkling Jr., personal communication, 1998). 

Such data indicated an observed peak of 359.62 ems at 10:00 AM on June 17th, 

corresponding to a river stage of 4.75 m above the flood stage. The HMS 

prediction was thus close to reality. 

The City of Ames used their HEC-1 model for that particular event and 

obtained a fairly good prediction (Tebben et al., 1997). Import of their HEC-1 

input file into REC-HMS showed a computed flow peak of 278.09 ems at 10:30 

AM on June 17th, which corresponds to a river stage of 4.42 m, above the flood 

stage (Appendix C). This HEC-1 simulation used an AMC of I.5. The HMS 

flow computation, though using a different AMC, was within the same range 

as the City of Ames' prediction. 
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Figure 7.1. Simulation for the June 1996 flood using raingage data as input 

7.3.2.1.2. July 1996 high water event: 

The choice of soil moisture related parameters was not easy for the 16-17 

July 1996 event. This event occurred exactly one month after the flood of June 

96, which could translate into wet soil conditions . There was basically no rain 

between these two events (National Climatic Data Center, 1996b and c), and the 

conditions for water evaporation were very favorable (National Climatic Data 

Center, 1996d). So it was deemed possible to use an AMC of II or even I. 

Results from both these simulations are shown in Figures 7 .2 and 7 .3 and 

indicated an overprediction. It was obvious that there was a large discrepancy 

between the observed and the computed river flows: 28.32 ems for the actual 

peak versus 240.69 ems and 144.61 ems for the computed under AMC II and I 

conditions respectively. 
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Figure 7.2. Simulation for the July 1996 event using raingage data as input 

(AMC II) 

It was interesting to note that the timing of the discharge peak of the 

computed hydrograph was very close to the peak time on the observed 

hydrograph. The prediction was at 09:00 PM on July 17 for the computed 

hydrograph, and at 10:00 PM on the same date for the observed. 

7.3.2.1.3. July 1997 high water event: 

The year of 1997 was a dry year in central Iowa (National Climatic Data 

Center, 1997b). Overall, less than average precipitation fell . Modeling with 

loss rate parameters corresponding to AMC I thus seemed adequate. 

HMS simulation results showed a large discrepancy between the observed 

flow and the computed flow, with an obvious overprediction (Figure 7.4). The 
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observed peak discharge was 37.01 ems , and the predicted peak flow 127.38 

ems . 

Although slightly smaller, the difference in flow magnitude for this case 

was similar to the one of the July 1996 event. As with this event, one could 

observe that the timing of the discharge peal of the computed hydrograph was 

very close to the peak time of the observed hydrograph. The observed peak flow 

was at midnight on July 24. The computed peak flow was to occur at 11:00 PM 

on July 24th. 

~ 

VJ 

a 
(.) 
'-" 

~ 
0 

!;:::: ..., 
::l 
0 

160 

120 

80 

40 

0 

1200 
16JUL96 

0000 

T 

I 

¥ 

* 

.J<Yx x x 
J X 
~ ~ 
~ 

* I 

x 
\ 

x 
I 
><; 

x 

x - ·· Predicted outflow (ems) 

• Observed outflow (ems) 

1200 0000 1200 0000 1200 0000 

17JUL96 T 18JUL96 T 19JUL96 T 
Time (hours) 

Figure 7.3. Simulation for the July 1996 event using raingage data as 

input (AMC I) 
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7.3.2.1.4. July 1993 flood event: 

The Flood of 1993's intensity was historically unusual. The Water Year of 

1993 was the wettest in 121 years of record (Snyder & Associates Inc, 1996). 

Rainfall totals from January to July were one-half to two times the average 

precipitation for the same period (Parrett et al., 1993). In addition, the snow 

cover of the 1992/1993 winter was heavy, and its melting in spring contributed 

to soil saturation (Snyder & Associates Inc., 1996). By spring, soil saturation 

was at 85%, which meant a larger percentage of new rainfall occurring was to 

become runoff. Using loss rate parameters corresponding to AMC III was 

thus perfectly justified. 
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Figure 7.4. Simulation for the July 1997 event using raingage data as input 
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Overall, results from the simulations showed a satisfactory matching 

between the computed hydrographs and the observed ones (Figure 7.5). 

Concerning the record crest of Squaw Creek on July 9, 1993, which caused a 

tremedous extent of building damage in Ames, the peak flow was predicted to 

occur at 03:00 PM with a magnitude of 601.82 ems, corresponding to a river 

stage of 5.47 m (the flood stage is 2.1 m) (Appendix C). In actuality, the flood 

wave hit Ames at 09:00 AM that same day, with a magnitude of 671.11 ems, 

corresponding to a river stage of 5.62 m. The flow prediction was thus close to 

reality in terms of its dimension, but predicted later. The timing of the 

computed second peak is right on time, on July 11, at 01:00 PM, but somewhat 

overpredicted with a magnitude of 379.43 ems (corresponding to a river 
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Figure 7.5. Simulation for the July 1993 flood using raingage data as input 
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stage of 4.83 m) versus an observed value of 232.20 ems (corresponding to a 

river stage of 4.16 m). As far as the third peak on July 13 is concerned, the 

prediction is for a discharge of 225 .41 ems (corresponding to a river stage of 

4.11 m) at midnight, whereas an actual peak of 180.38 ems (corresponding to a 

river stage of 3.76 m) occurred at 08:00 PM. This forecasting was thus also 

somewhat late and overpredicted. 

7.3.2.2. Quasi-distributed ModClark model 

7.3.2.2.1. June 1996 flood event: 

The ModClark simulation for the June 1996 event used the same subbasin 

loss rates as the run using raingage data: AMC III. Results from simulations 

with HMS predicted a peak flow of 53.80 ems on June 17th at 08:00 AM (Figure 

7.6). Comparison with observed flow data, a peak of 359.62 ems occurring on 

June 17th at 10:00 AM, indicated a large underprediction of about 85% in 

magnitude. This predicted flow's corresponding river stage (1.86 m) was not 

above the flooding stage of 2.1 m (Appendix C). A flood warning for possibility 

of damage to life and property would not have been issued based on these 

results. As far as the prediction of the timing of the peak is concerned, it was 

close to the one of the actual peak, though a little earlier. 

Comparing the results of the ModClark simulation using radar data with 

the one of the Clark simulation using raingage data indicated that the Clark 

gage model performed better, with a peak timing and magnitude closer to the 

observed event data (Figure 7 .6). 

7.3.2.2.2. July 1996 high water event: 

ModClark simulations for the July 1996 event used the same subbasin loss 

rates as the runs using raingage data. Two different soil moisture conditions 

were used: AMC II, and AMC I. Simulations with HMS for AMC II showed a 

peak flow of 83.66 ems on July 18th at Noon (Figure 7.7). The magnitude of the 

predicted flow was higher than the one of the observed flow, 28.32 ems. 

Compared to the observed time of the peak discharge on July 17th at 10:00 PM, 

the forecasted peak outflow was delayed by more than 12 hours. The use of 

AMC I modified only the magnitude of the predicted flow: 15.53 ems, which 

corresponded to an underprediction (Figure 7.8). These results indicated that 

the most adequate CN would have been somewhere between AMC II and I, for 
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Figure 7.6. ModClark simulation for the June 1996 flood using NEXRAD 

data as input 

the predicted magnitude to exactly model the observed one. Using AMC I.5 

gave a predicted discharge of 43.13 ems at Noon, which corresponds to a slight 

overprediction (Figure 7 .9). 

Comparison of these ModClark simulation results using radar data with 

those of the Clark simulations using raingage data led to two observations 

(Figures 7.7, 7.8, and 7.9). The Clark model was correct for the peak time, but 

greatly overpredicted in two cases. The ModClark model was close in terms of 

magnitude but wrong for the timing. Neither prediction was best . 
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Figure 7.7. ModClark simulation for the July 1996 event using NEXRAD 

data as input (AMC II) 

7.3.2.2.3. July 1997 high water event: 

ModClark simulations for the July 1997 event used the same subbasin loss 

rates as the runs using raingage data: AMC I. Results from simulations with 

HMS indicated a predicted peak outflow practically equal to zero (Figure 7.10). 

This did not compare with the actual observed flow of 37.01 ems. The timing of 

the prediction, when compared to the actual time of the peak discharge, 

showed the computed peak was 10 hours early: 24 July 97 at 02:00 PM versus 24 

July 97 at midnight for the observed. HMS subbasin data results indicating a 

very small amount of rainfall input, another simulation was done, using AMC 

II instead. The forecasted peak outflow was then 1. 77 ems on July 24, at 03:00 

PM (Figure 7.11). The timing was about the same but this run pointed out the 

small quantity of precipitation detected by NEXRAD. 
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Figure 7.8. ModClark simulation for the July 1996 event using NEXRAD 

data as input (AMC I) 

Comparison of the ModClark simulation results using radar data with 

those of the Clark simulations using raingage data showed an overprediction 

of outflow in one case (Clark), and an underprediction in the other (ModClark) 

(Figures 7.10 and 7.11). Like with the July 96 runs, the timing of the peak was 

correct with the Clark model results, but it was early with the ModClark model 

results. Neither prediction was best. 

7.3.2.2.4. Analysis of radar data and results 

Radar data simulations giving some unexpected results, with large errors 

in runoff hydrograph magnitude and peak time, and the GridLoadhdp 

program being fairly new and still in its developmental stage, some thorough 

examination of the NEXRAD data itself appeared necessary. 



www.manaraa.com

77 

- - x - - Observed outflow (ems) 

----.-- Radar computed outflow (ems) 

'V;' 30 
E 
u 
'-' 

~ 
0 

s 20 
::l 
0 

10 

0 

1200 

16JUL96 

x 
x 

I I 

ii I 

>,<. 

I ><x X 
1 )< I 

\ x 
! xx 

0 

X'< 

0000 1200 0000 1200 

T 17JUL96 T 18JUL96 

Time (hours) 

0000 1200 

T 19JUL96 

Figure 7.9. ModClark simulation for the July 1996 event using NEXRAD 

data as input (AMC I.5) 

0000 

I 

Original runs with the processed data, in particular, gave no output at all 

for the July 1997 case. The GridLoadhdp program developed by HEC is a brand 

new unpublished program, which has only been used in very few occasions for 

the application of the Mod Clark model by HEC. During the collaboration work, 

HEC agreed to check on its program since the Squaw Creek results seemed 

erroneous. A mistake was found in the program, which was causing rainfall 

values to be reduced by a magnitude of the order of 10. Re-run of the three 

simulations then led to the results described previously. 

To make sure that the radar technical specifications input to Gridloadhdp 

were correct, images of level I NEXRAD data for the basin were obtained for 

the three events -- in the format of printouts or .gif files -- from the contact 



www.manaraa.com

140 

,......_ 120 "' E 
u ..__, 

::: 100 
0 

c;:::: ..... 
;:l 
0 

··· ···· x ··· ·· Predicted outflow (ems) 

- - - Observed outflow (ems) 

78 

---7-- Radar computed outrl e> w te rn~ ) 

0.0025 

0.002 
::::0 
Pol 
0.. 
Pol ..., 
(') 

80 "O 
Q.) ..... 

0.0015 ~ 
u 
;a 

Q.) 60 .... 

"O 
t: 
~ 
0... 

0.. 
Q.) 
on 0.001 g 
ro 

40 on 
"O 

5 
0 
~ 

c:: ro 
"O 

Q.) 20 
() 

0.0005 ~ 
> .... 
Q.) 

"' ..D 
0 0 

0 

-20 
1200 0000 1200 0000 1200 0000 1200 0000 

23JUL97 T 24JUL97 T 25JUL97 T 26JUL97 T 
Time (hours) 

Figure 7.10. ModClark simulation for the July 1997 event using NEXRAD 

data as input (AMC I) 

person at the NWS in Johnston, Iowa. Some data could not be retrieved for the 

July 1997 storm, but a few of the storm hours were available. GridLoadhdp 

automatically generates, after translation of the data into a DSS format, .jpg 

image files for each hour of the data. These images were then compared to the 

ones of the NWS. For the three events, it was found that both sets of images 

were agreeing. The storms were moving in the same direction and, except for 

some hours, precipitation was present on both sets for the same periods. 

A more in-depth examination of the radar data was then pursued. The 

HEC GridLoadhdp person specially generated a report data file for each month 

of the event, reporting for each hour and for the whole radar beam, the 

number of HRAP cells receiving more than 0, 10, and 20 mm of precipitation, 

as well as the maximum amount of precipitation detected. These data were 

..._, 
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Figure 7.11. ModClark simulation for the July 1997 event using NEXRAD 

data as input (AMC II) 

analyzed in comparison with the timing of the precipitation received by the 

raingages. because this information was concerning the whole radar beam, it 

was not easy to determine which cells' data would apply to the Squaw Creek 

watershed. The Gridloadhdp program was then slightly altered so as to 

include in its output a detailed report showing for each basin cell the amount 

of precipitation received for each hour. This was done using the HRAP 

coordinates of the cells covering the basin that were obtained from the NWS 

GridParm procedure. These files' data were then analyzed and, after 

conversion of the storm times from UTC to local time, compared with the 

timing of the precipitation received by the NWS raingages and with the NWS 

images for the Squaw Creek area. For the June 1996 storm, the timing of the 

3 
VJ 
'-' 
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rainfall agreed fairly well in all cases. For the July 1996 event, the radar did 

not seem to have captured the storm at the same time as the raingages did: an 

approximate delay of 4 to 5 hours was noticeable. The NWS images also 

indicated a different storm beginning time than the corresponding digital 

radar data: a discrepancy of 2 to 3 hours was identified. As far as the July 1997 

case was concerned, it was obvious that the raingages captured the storm in a 

totally different way from the radar: both systems recorded about the same 

beginning of the storm but the raingages showed rainfall data for an extra 6 

hours. 

In terms of rainfall intensities, a general comparison was made between 

the raingage data and the radar data. It was found that for the June 96 event, 

radar rainfall intensities were very much lower than the ones recorded by the 

raingages. The precipitation intensities were, however, of the same order of 

magnitude for the July 96 case, with a slight overestimation of the radar 

values. The July 97 case was characterized by low radar rainfall values, very 

much lower than the raingage ones. 

These observations on the radar data were useful for several reasons. They 

first confirmed that the GridLoadhdp program had operated well. They then 

highlighted two facts: 1) the radar rainfall intensities did not always seem to 

reflect reality, and 2) the radar precipitation did not appear to always be 

detected at the right times. During the examination of the digital data, it was 

also found that a few hours of data were missing. The occurrence of a 

mismatch between digital data and NWS images was intriguing, and may be 

the consequence of a problem of data transfer between the raw data at the 

radar location and its capture into the image software and the archival 

system. It thus appeared that the quality ofNEXRAD data may not be the best 

as of now. 

7.3.2.2.5. Testing of the functioning of HEC-HMS 

HMS being a brand-new software with several malfunctioning problems 

already identified, it seemed prudent to test its functioning in the quasi­

distributed mode -- Mod Clark. It was also one of the very first times that 

ModClark was used in the HMS environment, so checking would ensure that 

the software functioning was not causing the erroneous hydrographs in the 

predictions. 
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To do so, several different fictitious DSS radar data files were generated 

using different scripts added to the GridLoadhdp program by the HEC 

specialist. They were generated so that each hour of the storm would 

correspond to a uniform rainfall intensity. All basin HRAP cells would receive 

this same amount of precipitation simultaneously. The purpose was then to 

use these fictitious radar rainfall data files with modClark in HMS to examine 

how the model would respond. If the software was functioning well, it was 

expected to obtain even and uniform runoff hydrographs since a uniform 

rainfall was used for input. 

First, a series of four fictitious storms were utilized: a 1-hour storm with a 

rainfall intensity of 25 mm/hr, a 1-hour storm with a rainfall intensity of 125 

mm/hr, a 3-hour storm with a rainfall intensity of 25 mm/hr, and a 3-hour 

storm with a rainfall intensity of 125 mm/hr. Running of these DSS radar files 

was done with HMS ModClark using the different AMC conditions, I, II, and 

III, so as to examine the model response under different circumstances. The 

following results were obtained (Table 7.1). 

The shape of the runoff hydrographs obtained in all cases was a uniform 

bell shaped hydrograph, which proved that HMS ModClark was responding 

well to a uniform rain input. In addition to this characteristic, the magnitude 

Table 7.1. HMS ModClark simulation results for the four fictitious storms: 

peak magnitude and date and time of peak (in hours) 

Storm 1-hour 25 mm I-hour 125 mm 3-hour 25 mm 3-hour 125 mm . 

Occurrence of 7/2, 18:00 to 7/2, 18:00 to 7/3, 01:00 to 7/3, 01:00 to 

storm 19:00 19:00 04:00 04:00 

AMCI 0 ems 246.83 ems 68.12 ems 1624.70 ems 

7/3, 11:00 7/3, 20:00 7/3, 19:00 

AMC II 12.35 ems 483.81 ems 204.13 ems 2087.70 ems 

7/3, 11:00 7/3, 11:00 7/3, 20:00 7/3, 19:00 

AMC III 62.25 ems 686.30 ems 354.27 ems 2367.20 ems 

7/3, 11:00 7/3, 11:00 7/3, 19:00 7/3, 19:00 
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of the outflows computed for the different soil moisture conditions fitted what 

one would expect: gradually more runoff as the soil water content increases. 

These run results thus demonstrated that the ModClark model is functioning 

properly in the HMS environment. 

A general outlook at the time to peak in all storm cases revealed an average 

of 15 to 16 hours. The time to peak here was defined as the time from the 

center of mass of the rainfall to the peak time of the hydrograph at the basin 

outlet. Previous studies on the Squaw Creek have found that this time to peak 

is generally between 12 and 14 hours, though the direction in which the storm 

travels can influence it (Ganville, 1987; Snyder & Associates Inc. , 1996). Such 

a time being 15 or 16 hours, the hydrograph peak in these fictitious storms 

appeared somewhat late, though its value, within a reasonable order of 

magnitude, did confirm a correct functioning of the Squaw Creek ModClark 

model. 

The time to peak being more accurately measured from the time of 

maximum rainfall intensity within the storm duration to the peak time at the 

basin outlet, two other fictitious storms were made up that would ease such 

determination. Using additional scripts added to the Gridloadhdp program 

two fictitious DSS radar data files were generated that corresponded to the 

following storms: a 3-hour storm with successive rainfall intensities of 25 

mm/hr, 125 mm/hr, and 50 mm/hr; and a 9-hour storm with successive 

rainfall intensities of 25 mm/hr, 50 mm/hr, 75 mm/hr, 100 mm/hr, 125 

mm/hr, 100 mm/hr, 75 mm/hr, 50 mm/hr, and 25 mm/hr. the characteritics 

of these storms were the same as the previous ones: the rainfall intensity was 

the same for the hour it applied to, and all basin HRAP cells received this 

amount of precipitation. These files were used as input to the HMS ModClark 

model for the three AMC conditions. Results are listed in Table 7 .2 and Table 

7.3. 

Like with the precedent fictitious storms, the same result trends could be 

observed: a uniform shape of the outflow hydrograph and an increase in 

computed runoff as curve numbers would increase. This confirmed the 

observation that HMS ModClark was running properly. These simulations for 

the two storms also allowed an easy determination of the time to peak. The 

results showed that the modeled time to peak was longer than 12 to 14 hours. 
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Table 7 .2. HMS Mod Clark simulation results for the two additional fictitious 

storms: peak magnitude and date and time of peak (in hours) 

Storm 3-hour 9-hour 

Occurrence of storm 7/3, 01:00 to 04:00 7/3, 01:00 to 10:00 

AMC I 607.15 ems 3126.30 ems 

7/3/ 19:00 7/3, 23:00 

AMC II 945.45 ems 3641.90 ems 

7/3, 19:00 7/3, 22:00 

AMC III 1187.30 ems 3921.50 ems 

7/3, 19:00 7/3, 22:00 

Table 7 .3. Time to peak (in hours) for the two fictitious storms 

Storm 

AMC I 

AMC II 

AMC III 

3-hour 

17 

17 

17 

9-hour 

18 

17 

17 

This indicated that, based on this hypothetical radar rainfall data, the Squaw 

Creek ModClark model probably required some adjustment of its parameters 

related to the time of travel of the flow because the runoff was reaching the 

outlet late. Two deductions could be made from these results. Model routing 

parameters, in particular the Muskingum time of travel of the water wave, 

would probably need to be adjusted. The model travel times for the HRAP cells -

- from the center of the cell to the subbasin outlet -- would also possibly benefit 

from some adjustment. Adjusting both types of parameters would probably 

help reduce the basin time to peak. 
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HEC-HMS has capabilities for an automated optimization of the values of 

selected runoff parameters when observed precipitation and discharge data 

are available (Hydrologic Engineering Center, 1998). Parameter calibration is 

achieved by an automated adjustment of the values of the selected parameters 

to produce an optimal fit of a computed hydrograph to an observed hydrograph 

at a target location. In HMS, the optimal fit is quantitatively measured with 

an objective function based on the degree of variation between the computed 

and observed hydrographs. The variation is equal to zero if the hydrographs 

match exactly. The automated parameter estimation is performed with a 

search procedure which adjusts the selected parameters to produce an optimal 

fit that minimizes the magnitude of the objective function. Constraints are 

imposed on parameter values to insure that unreasonable values are not 

utilized. Initial values for all parameters are required at the start of 

optimization. A hydrograph is computed at the target location and the value of 

the objective function is calculated. The search procedure adjusts values for 

the selected parameters to optimize and a new computed hydrograph and 

objective function are obtained. This procedure is repeated until little 

improvement in the objective function is gained. 

Calibration for the Squaw Creek model was performed with parameters for 

subbasins and reaches upstream of the basin outlet in Ames, where an 

observed streamflow hydrograph can be known. Of the four objective function 

types available in HMS (HEC-1 objective function, sum of squared residuals, 

sum of absolute residuals, and percent error in peak flow), the HEC-1 objective 

function was chosen because of its more accurate measure of goodness of fit. 

The equation and definition of the function can be found in the HEC-HMS 

manual (Hydrologic Engineering Center, 1998). Two search methods are 

available in HMS: the Univariate Gradient Method, and the Nelder and Mead 

method. The latter method was chosen because of its potential for producing a 

more optimal fit through changes of the magnitude of all selected parameters 

during each optimization run. Details on this search method can be found in 

the HEC-HMS manual and in a journal article (Nelder and Mead, 1965). 

Values for the constraints imposed on the parameters are divided into two 

groups (Hydrologic Engineering Center, 1998). Hard constraints are those that 
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keep the magnitude of a variable within reasonable limits . For example, 

negative values are not allowed. Values for hard constraints are indicated in 

Table 7.4. 

These constraints are general guidelines. Soft constraints need to be 

specified by the user to keep parameter values within tighter limits than those 

defined by the hard constraints. They also help avoid values that cause 

instabilities or errors in computations. 

Table 7.4. Hard constraints on the magnitude of some parameter values as 

recommended by HEC (Hydrologic Engineering Center, 1998) 

Parameter Minimum constraint Maximum constraint 

Clark time of concentration 0.1 hr 500hr 

Clark storage coefficient 0 hr 150 hr 

Muskingum K 0.1 hr 150hr 

Muskingum x 0 0.6 

Parameter calibration was performed with HMS only for the lumped Clark 

model. Simulation results with the ModClark model were not judged 

satisfactory enough to warrant calibration in this manner. Model transform 

and routing parameters (Clark time of concentration Tc, Clark storage 

coefficient R, Muskingum flood wave travel time K, and Muskingum 

weighting factor x) were used in the optimization process. These parameters 

depict the watershed's physical characteristics and are held constant in the 

model. The best possible estimate of their value is consequently critical for the 

reliability of the model. Parameters such as the soil moisture, represented by 

the curve number, and the baseflow, vary from storm to storm: they are thus 

not part of an optimization process. 

The Clark model was calibrated with the June 16-17 1996 event -- the best of 

the three simulations--, using observed flow at the outlet and observed 

raingage data for the hydrograph computation. Original values of the 

parameters served as the initial values in the optimization. After numerous 

trial runs, soft constraints were defined so as to prevent instability in the 

computation of calibrated values, and obtain reasonably calibrated 
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parameters. The best soft constraints leading to zero warnings and no errors 

in the optimization and to the best obtainable fit are reported in Table 7.5. 

The optimization process was tedious, mainly because of the difficulty in 

determining values for the soft constraints. It was found that optimizing over 

a long time period, for example 16 June 96, 01:00 to 19 June 96, 18:00, did not 

produce satisfactory results at all in terms of improving the peak flow and its 

magnitude, though it improved the overall shape of the hydrograph. Reducing 

the time window a lot, on the other hand, would render the procedure easier 

and faster, but exclude a large portion of the hydrograph. An intermediate 

time frame. encompassing most of the rising and falling limbs of the 

hydrograph, was thus chosen for the computations: 16 June 96, 12:00 to 18 

June 96, 18:00. The purpose was to try and get a reasonable calibration for 

parameters within this time window because the interest is to model the peak 

flow and time as well as possible so, if it is used in the future by the City of 

Ames, their flood warning system can be as reliable as possible. 

Table 7 .5. Soft constraints on the magnitude of parameter values used in the 

optimization process 

Parameter Minimum constraint Maximum constraint 

Clark time of concentration 8 - 9 hr 20 hr 

Clark storage coefficient 1 hr 20 hr 

Muskingum K 1 hr 6 - 10 hr 

Muskingum x 0.1 0.3 

Once optimization results were judged satisfactory, that is to say when the 

value of the HEC-1 objective function showed little or no improvement , and the 

values for the parameters were within reasonable ranges and not unrealistic, 

the optimized values were retained. They correspond to a value of 36.4 for the 

objective function. Overall, optimized values were not too different from the 

original estimated values. They are listed in Table 7.6. 

These optimized values, when used to re-run the June 96 simulation, 

helped to obtain a better fit between the observed hydrograph and the computed 

one, on both the rising and falling limbs . Matching between the computed and 
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Table 7 .6. Lumped Clark model optimized parameter values 

Parameter Optimized value 

Subbasin-A Tc 9.00 hrs 

Subbasin-A R 9.56 hrs 

Subbasin-B Tc 13.09 hrs 

Subbasin-B R 11.72 hrs 

Subbasin-C Tc 10.01 hrs 

Subbasin-C R 9.77 hrs 

Reach-1 K 6.13 hrs 

Reach-2 K 5.99 hrs 

Reach-1 x 0.11 

Reach-2 x 0.30 

the observed falling limbs appeared to require more adjusting. The new 

simulation showed a peak of 329.19 ems, occurring at 11:00 AM on June 17, 96, 

corresponding to a river stage of 4.64 m (Figure 7.12). Compared to the 

original results , the calibrated parameters led to an increased peak flow, 

329.19 ems versus 317.14 ems. The timing however did not improve and was 

still off from the actual time by lhour. 

7.4.2. ModClark model 

The testing of the functioning of HEC-HMS having indicated the need for 

adjusting cell travel times and the time of travel of the flood wave, some 

adjustments were made to the ModClark model. They used the hypothetical 

radar data storms generated from the testing of HMS. The goal was to modify 

values so the time to peak would be within the 12 to 14 hour range, which 

corresponds to the range of time response of the watershed as known to date. 

The late timing observed during the run of the two storms was small so the 

adjustment of the parameters had to be progressive. 
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Figure 7.12. Re-run of the simulation for the June 1996 flood using the 

calibrated parameters 

In the first place, the Muskingum K values for the two model reaches were 

reduced by one hour. Reach-1 value became 3.4 hours and Reach-2 3.3 hours. 

The simulations for the 3-hour and 9-hour hypothetical storms were re-run 

to analyze the effects of the change. Peak time results are reported in Table 

7.7. 

The time to peak decreased by one hour for the 3-hour storm: 16 hours 

versus 17 hours originally, and by 2 hours for the 9-hour storm: 16 hours 

versus 18 hours originally. 

More than 12 to 14 hours of time to peak being obtained, more adjusting was 

needed. The Gridcell parameter file , generated through the gridParm 

procedure, was then manually edited so the individual cell travel time could be 

modified. One needs to recall that in the ModClark model, the cells' travel 



www.manaraa.com

89 

Table 7. 7. Hypothetical storm simulation results after adjustment of the 

Muskingum K parameters in the ModClark model 

3-hour storm 9-hour st orm 

Ouflow Peak time Ouflow Peak time 

(ems) (hours) (ems) (hours) 

AMC I 643.11 18:00 3303.10 21:00 

AMC II 999.64 18:00 3838.90 21:00 

AMC III 1253.10 18:00 4131.50 20:00 

time is represented by the flow path length. Observations during the testing of 

HMS having shown that these times of travel were probably slightly 

overestimated, the values were all reduced by 1 km. Re-run of the simulations 

for the 3-hour and 9-hour hypothetical storms gave the following results (Table 

7.8). 

The impact of the modification on the cell travel time indexes was not too 

noticeable: only a decrease by 1 hour was observed in two of the cases. The 

reduction of the cell travel times did not appear to have an obvious effect. It 

could then be inferred that their estimation through the GIS GridParm 

procedure was probably correct. The values of the routing parameter K, being 

most likely overestimated, were probably more in need for some additional 

adjustment. The K values were thus reduced by another hour: Reach-l's value 

became 2.4 hours and Reach-2 2.3 hours. The output of the re-run of the 

simulations for the 3-hour and the 9- hour hypothetical storms is reported in 

Table 7.9. 

This time, simulation results showed a time to peak of 14 hours for both the 

3-hour and the 9-hour storms. This value fell within the range of 12 to 14 

hours for the basin. These parameter adjustments of the Mod Clark model 

were judged satisfactory and should probably be retained for future work on 

the model. The adjustment work was not pursued any further because the 

data used was fictitious and real data needs to be used to ensure the validity of 
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Table 7 .8. Hypothetical storm simulation results after adjustment of the cell 

travel time indexes in the ModClark model 

3-hour storm 9-hour storm 

Ouflow Peak time Ouflow Peak time 

(ems) (hours) (ems) (hours) 

AMC I 636.70 18:00 3274.70 21:00 

AMC II 989.31 18:00 3809.10 20:00 

AMC III 1241.90 17:00 4103.70 20:00 

Table 7.9. Hypothetical storm simulation results after a second adjustment of 

the Muskingum K parameters in the ModClark model 

3-hour storm 9-hour storm 

Ouflow Peak time Ouflow Peak time 

(ems) (hours) (ems) (hours) 

AMC I 670.55 16:00 3450.60 19:00 

AMC II 1043.80 16:00 4014.30 19:00 

AMC III 1241.90 17:00 4312.00 19:00 

these adjustments. As with the lumped Clark model, it can be called a "first­

generation" adjustment. 
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CHAPI'ER 8. DISCUSSION 

8.1. Lumped Clark model results 

8.1.1. June 1996 fiood event 

Simulation results for the June 1996 flood in Ames were satisfactory, both 

in terms of peak outflow and time. The simulation led to a flooding prediction, 

which is what happened. Although close to the City of Ames' HEC-1 model 

prediction, it did not use loss rates corresponding to AMC I.5 like the City did, 

but curve numbers representing an AMC III or wet soil condition. This may 

be better suited to real conditions taking into account the amount of spring 

snow melt and the very wet month of May. As far as the rainfall data recorded 

by the NWS raingages is concerned, it seemed to have been well captured 

temporally and spatially. 

8.1.2. July 1996 and July 1997 high water events 

This might not have been the case of the simulations for the July 1996 and 

July 1997 events, where a large overprediction was obtained. Only the timing 

of the peak flow was satisfactory in both cases. This would tend to reflect a 

correct estimation of the Clark parameters, since they control the time of 

concentration and greatly influence the timing of the discharge. 

Hand calculations of the depth of rainfall falling onto the watershed and the 

depth of runoff corresponding to the observed flow clearly showed a 

discrepancy. With about 71 mm of incoming rain and 3 mm of runoff for the 

July 96 case, and about 66 mm of incoming rain and 9 mm of runoff for the 

July 97 case, it seemed impossible that so much water would have infiltrated. 

Several things can therefore be hypothesized, that might account for the errors 

encountered in the results. 

In particular, the raingages' data can be questionned. Three of these 

raingages are located outside of the watershed. It is possible that a localized 

storm cloud was stationary above one or more of the raingages during the 

rainstorm, hence causing a large amount of precipitation to be recorded. For 

the July 97 event, modelers at the City of Ames used input data from their own 



www.manaraa.com

92 

raingages disseminated within and outside of the watershed. They, too, 

obtained an overprediction with their HEC-1 model and think some clouds 

must have been immobile for some time over the raingages (Karla Tebben, 

personal commumication, 1998). Some processing errors could also have 

occurred during the transfer of data, from the NWS raingages to the NCDC in 

North Carolina, and its transcription to the monthly publication. 

The overestimation of rainfall by the raingages resulted in a wrong spatial 

averaging of the precipitation through the Thiessen network and an erroneous 

input to the model, leading to an overprediction. This is actually an 

illustration of the main problem associated with raingages: they do not capture 

the spatial distribution of a rainstorm. 

Regarding the observed streamflow data, one needs to keep in mind that the 

gage failed in June 96. Whether the flow gage was completely repaired and 

fully operational a month later is not certain and when asked this question 

several times, the USGS would not answer. The flow peak recorded for the 

event was minimal and could slightly underestimate the real conditions. 

Physical characteristics in the upper portion of the Squaw Creek basin 

could also have played a role in the overprediction of flow. In the headwaters 

area, numerous potholes and small wetlands are present, and the cultivated 

fields contain a lot of ground depressions. The potential for storing water at 

this level is probably high. During a rainstorm, these surface depressions and 

wetlands may fill up with water before any surface runoff actually starts 

occurring. Only when these puddles and water retaining areas are completely 

filled up will water flow over the surface as excess precipitation. If one can 

reasonably assume that the amount of depression storage in the headwaters is 

substantial, then it is highly possible that during a rainstorm on a relatively 

dry soil, little runoff occurs due to this surface storage system. In addition, the 

presence of a network of drainage tiles may play a role. Under dry conditions, 

it takes a while for the underground tile system to fill up: the amount of water 

retained there does not reach the stream immediately but later, which might 

account for the fact the observed flow is so low under such circumstances. The 

July 96 and July 97 cases are characterized by relatively dry conditions before 

the rainstorm. Applying the above theory would explain why so little excess 

rainfall was observed. The model does not incorporate this water storage 

factor, therefore leading to a false overprediction, perfectly correct from a 
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mathematical standpoint but wrong from a physical standpoint. On the other 

hand, during a heavy rainfall event, these water retaining areas fill up but 

become full and see their capacity exceeded. Runoff then occurs just like in the 

situation that the model applies, and the effects of surface storage are not 

noticeable any more. In such cases, the prediction appears to be matching 

reality pretty well. This is for instance the case of the June 96 flood simulation. 

A slight underprediction is however noticeable. This could be explained by the 

following fact. It is possible that the underground tile system, in a heavy 

storm situation, gets filled up rapidly, flushing extra water in the creek, hence 

increasing the amount of flow, resulting in a large observed flow, which the 

model underpredicts. For the model to be more accurate, especially for the 

storm cases occurring under dry soil conditions, one would need to try and 

modify it. In particular, the inclusion of a fictitious detention reservoir 

component might help take into account the specific physical characteristics 

in the northern part of the basin: the ground depressions and the tile network. 

Such a detention storage system should be designed so as to detain or slow 

down the runoff, as in a reservoir, and then release it. Part of the retained 

water could also be removed from storage by infiltration through a porous 

bottom, or by evaporation. The required storage volume should be based on an 

analysis of storm event volumes. This possible further study on the model 

might, by trying to mimic characteristics unique to the Squaw Creek basin, 

lead to an improved accuracy of the flood and high water event predictions. 

Another thing is that HEC-HMS is a brand-new software, released by HEC 

in April 1998. Like any other new model, it has not been extensively used and 

thus tested yet. Some of its "bugs" have been identified and are being taken 

care of. It is possible that others may not have been spotted for the time being, 

which may result in erroneous outputs. The high-water events of July 96 and 

July 97 are not flood situations. Maybe HMS cannot respond well to small 

storms and these two cases would tend to illustrate this fact. HEC-HMS is still 

in its infancy. 

8.1.3. July 1993 fiood event 

Simulation results for the July 93 flooding period were interesting for 

several reasons. First, they came relatively close in terms of magnitude and 

timing, which helped verify that the model parameters estimated in the first 
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place were not too far off their correct value. Second, HEC-HMS, like HEC-1 , 

does not respond well to several close peaks of rainfall, according to HEC (Troy 

Nicolini, personal communication, 1997). The period modeled here did contain 

such features but the HMS response did not appear erroneous, which would 

therefore constitute an unusual finding. It is also possible that the difference 

in peak timing between the actual and computed flows originates in this 

incapacity of HMS in modeling several successive storms. 

8.2. Quasi-distributed ModClark model 

8.2.1. Event simulations 

Simulation results for the three study cases of the June 1996, July 1996, and 

July 1997 storms showed computed runoff hydrographs that were grossly in 

error compared to observed hydrographs . For the June 96 event, there was not 

enough radar measured rainfall to model the observed flow. Even reducing 

loss rates to zero would not have improved the prediction and would have been 

unrealistic. The corresponding lumped Clark simulation using raingage data 

produced a better prediction, especially in terms of peak magnitude. This case 

seemed to illustrate the type of magnitude errors that can occur in Stage I, 

with, in this particular situation, an underestimation of the precipitation 

amount. 

The July 96 event peak, aside from its wrongly timing, was modeled fairly 

well by ModClark. A slight overestimation of the actual rainfall, however, 

seemed to have been recorded. This, again, can be classified as typical of the 

magnitude of errors in the radar measurements. It was interesting to observe 

that the storm was falsely recorded by the raingages, although the timing of 

the peak with the lumped Clark simulation was much more accurate. The 

NEXRAD data inaccuracies were rather small in terms of magnitude. 

The July 97 event displayed the same characteristics: the raingage recorded 

erroneous amounts of precipitation, whereas the radar did not. Again, the 

timing of the peak obtained with the lumped Clark simulation was much 

better than the one with the ModClark run. But the rainfall amounts detected 

by NEXRAD were quite underestimated because even the use of lower loss 

rates would not produce a predicted hydrograph even close to the observed one. 

This, once more, was due to magnitude inaccuracies in the data. 
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For both the July 96 and July 97 cases, the raingages misinterpreted the 

storm event whereas the radar captured the rainfall event better, even though 

there were problems of timing and magnitude accuracy. This illustrates the 

potential of NEXRAD in terms of its capacity to detect the spatial distribution of 

rainfall. Using radar rainfall can thus be an advantage. These two cases give 

an insight into the fact that the ModClark method can have a significant 

potential for improving forecasting capability provided it is used with 

adequately accurate radar rainfall. 

One could also notice the following trend from the results. When storms 

are locally intense (case of the June 96 event), Stage I timing inaccuracies 

appear to be smaller, whereas less intense storms (July 96 and 97 cases) seem 

to result in greater timing problems. These timing discrepancies could be 

attributed to errors in the radar measurement of the precipitation itself. The 

presence of wind or evaporation below the radar beam can not only 

significantly affect the quantity of rain that falls onto the ground, but also its 

timing. The rainfall can then touch the ground either early or late, which 

causes the radar data to be erroneous in terms of timing. The Mod Clark 

computations for the July 96 and July 97 events appear to be cases of this type of 

measurement problem. Both had discrepancies in the timing of the capture of 

the storm when compared to NWS images and raingage data and were 

modeled by ModClark with timing errors. Errors in the radar data can thus 

greatly impact the accuracy of the modeling results. 

One study can be cited here because it relates to the problems encountered 

with the quality of NEXRAD data in this research work. A NCDC study 

compared Stage III NEXRAD-estimated storm total precipitation with 

raingage-measured total precipitation for five storm events in Kansas, south­

east Texas, Florida, Louisiana, and South Carolina (National Climatic Data 

Center Research Customer Service Group, 1996). The five events were chosen 

due to their extensive and damaging nature. The study revealed a difference 

between the actual (raingage-measured) and the estimated (NEXRAD­

measured) rainfalls. In 80% of the cases, the NEXRAD estimates were too 

low, sometimes by a factor of 2 or 3. NEXRAD-estimated rainfall fell an 

average of 73.66 mm below the actual amounts recorded by the raingages. 

Other comparisons made by the NWS at the Tulsa radar site in Oklahoma and 

at radar sites in the southern plains also indicated that WSR-88D hourly 
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rainfall estimates tend to exhibit significant underestimation (Smith et al., 

1996a). The inaccuracies of currently available Stage I and Stage III data thus 

seem to be common. 

The analysis of the radar data and the testing of the functioning of 

ModClark in the HMS environment were very useful for the interpretation of 

the results obtained. The testing of HMS revealing that the Squaw Creek 

ModClark model was operating properly, the erroneous aspect of the results 

due a model fault could be ruled out. The in-depth examination of the radar 

data did reveal some flaws. Rainfall was not always detected at the right times 

and not in intensities reflecting reality. The quality of the data was thus 

greatly impacting the simulation results and causing errors in them. A 

model can only produce results that are as accurate as the data entered to the 

model. At this point in the development of the Mod Clark capability, it is 

important to separate the evaluation of the method from that of the radar 

rainfall product used. Because of this unpredictable performance of stage I 

data, it is recommended that forecasting water control decisions should not be 

based solely on Stage I radar rainfall. In the future, superior radar rainfall 

products should be used, such as Stage III, which will include ground­

truthing and other quality enhancements. It is useful to note that as these 

products become reliable and available, they will be able to be used in the 

current Squaw Creek ModClark model without any model modification. 

Specific discussion aspects concerning the quality of NEXRAD data can be 

found in section 8.2 of the thesis as well as comparisons with ModClark 

simulation results obtained by HEC in previous applications. These are 

currently the only ones available in literature for comparison to the Squaw 

Creek results. The quality of the HEC results compares with the one of this 

project. 

8.2.2. Distributed versus lumped modeling 

Although no other research work on such modeling with NEXRAD data 

could be found, other literature articles gave some interesting insight into 

comparing rainfall-runoff modeling in a distributed and in a lumped manner. 

Different studies have investigated hydrologic model response to 

precipitation inputs of various spatial resolutions. In their work, Wilson et al. 

(1979) concluded that ignoring the spatial variability of precipitation input, 
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even when the total depth of rainfall is preserved, can have significant 

influences on the runoff hydrograph. Their findings were for a 67 km2 basin 

and two types of precipitation input were used: in the first case, one gage was 

used to define the input, while in the second, 20 gages were used. Beven and 

Hornberger (1982) arrived at the similar conclusion that the incorporation of 

distributed inputs would lead to improved simulated hydrographs. 

On the other hand, Obled et al. (1994) used 21 raingages to define the input 

to 9 subbasins representing a 71 km2 basin. They presumed that providing 

distributed inputs to the model would improve simulations. But their semi­

distributed representation of the basin produced slightly worse results than a 

lumped representation. These authors were unable to prove the value of using 

distributed rainfall inputs to improve hydrologic predictions. Pessoa et al. 

(1993) found that simulated hydrographs from a 840 km2 watershed using 

distributed C-band radar inputs were not significantly different from 

simulated hydrographs produced from lumped radar-rainfall inputs. Kouwen 

and Garland (1989) examined the effects of radar data resolution on runoff 

hydrographs produced from a distributed model. They found that coarser 

resolution radar input sometimes produced better simulation results, due to 

smoothing of errors present in finer resolution data. Obied (1991), in a 

reflection on rainfall data requirements, also concluded that the requirements 

for the rainfall input are not necessarily of highest resolution. Rather, the 

choice should come from a consideration of the sensitivity of the model and its 

overall average performance. Loague and Freeze (1985), who studied the 

response of a variety of lumped and physically-based models, determined that 

simpler, less data intensive models provided as good or better predictions, 

which is food for thought. 

In general, there weren't too many articles reporting on the effect of the 

resolution of the input data on the hydrologic modeling response. NEXRAD 

being recent, there was also no evaluation of model response to HRAP-based 

precipitation estimates. Among the studies reported above, there did not seem 

to be a clear trend supporting the intuitive hypothesis that the use of higher 

resolution data leads to better model results. One should expect that 

distributed models, by taking into account the spatial variability of input and 

processes, would improve flow predictions. but expecting that our improved 

understanding of these hydrological processes directly affects the quality of the 
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model output is probably unjustified. There are many things about 

hydrological systems that are essentially unknowable, especially the nature of 

flow processes below the ground (Beven, 1996). Even more computer power 

cannot remedy this lack of information. Distributed modeling needs to be 

approached with some circumspection. Some process descriptions may not be 

appropriate, and some grid parameter values not correctly estimated. There is 

always a part of uncertainty in distributed models and, in practice, the spatial 

discretization in the model makes it very difficult, if not impossible, to validate 

on the field at the grid level. In all cases, at some level in the model, some 

lumping has to be done (Singh, 1995). Hence, there are no fully distributed 

models, rather they are quasi-distributed at best. Having both a lumped and a 

quasi-distributed models for the same basin might represent the best option to 

insure correct flow predictions. 

At this point in time, and in view of the radar data simulation results 

obtained in the Squaw Creek case and in the previous HEC applications (see 

section 8.3), it could seem unclear whether the use of gridded rainfall data 

from NEXRAD with a quasi-distributed model like ModClark can provide more 

accurate hydrograph simulations than the use of a lumped approach. The 

joint involvement of radar hydrometeorologic researchers in improving the 

accuracy of the NEXRAD data, and hydrologic modelers implementing the 

quasi-distributed model will tell. More work is thus needed because the 

simulation results obtained only reflect the current stage of the technology. 

One thing, however, remains certain for the Squaw Creek case. The 

presence of a surface water storage system in the northern part of the basin 

can only be well modeled through a distributed representation. The use of 

ModClark can therefore only benefit the modeling of the basin and the 

hydrologic predictions. 

8.2.3. Possible weak points of the ModClark model 

ModClark model shortcomings as shown in the simulation results for the 

three study events illustrated the errors that stage I NEXRAD data can 

contain. Aside from the quality of the input data, the model itself could 

possibly benefit from certain ameliorations. 

In particular, the current structure of Mod Clark in HMS only allows the 

specification of a subbasin loss rate that applies to all HRAP cells located in 
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this subbasin. Having the possibility of entering grid-based loss rates might 

help improve flow computations. An extensive soil study for each subbasin 

would, of course, be required, so as to enable the correct estimation of a loss 

rate for each grid cell. This might make a difference in the results obtained 

because soil moisture is a key parameter in making flow predictions. Future 

versions of HMS will most likely include the capability for a gridded loss rate 

feature. It will then be interesting to do more research to find out if more 

spatial resolution for soil mosture will help improve the predictions. 

In its future planned features to be added, HMS should incorporate a 

continuous soil moisture accounting option (Hydrologic Engineering Center, 

1998). Soil moisture being a critical factor, one might consider using this new 

capability in the future for Squaw Creek. In fact, several hydrologic studies 

with data from various midwestern basins have confirmed that soil moisture 

is the most important variable for the study of hydrologic processes 

(Georgakakos et al., 1995). More research would be needed to devise the 

necesary soil moisture measurement instrumentation, and collect the 

necessary data. The SCS CN used until now in the Squaw Creek basin 

remains an empirical method and, if possible, switching to a different loss rate 

method may bring more confidence to the modeling operations. According to 

Burnash et al. (1995), in areas where substantial drying of the soil could occur 

between runoff events, the CN method has difficulty in describing the degree of 

dryness and determining the amount of runoff produced from rainfall. If 

storms occur in close proximity to one another, the ability of the technique is 

degraded. Limitations on the use of the CN method are thus clear. 

The ModClark model does not take into account evapotranspiration in its 

computations. Evapotranspiration includes transpiration from leaf surfaces, 

direct evaporation from the soil, and direct evaporation from the surfaces of 

ponds and streams. It is one of the most difficult processes to evaluate in 

hydrology (Burnash, 1995). It can therefore represent a significant source of 

error in streamflow simulation. In the case of Squaw Creek, potential 

evapotranspiration exists in spring and summer, when most flood predictions 

are made. Surface water storage in the northern part of the watershed 

contributes to the overall evapotranspiration. Having some means of taking 

into account the amount of evapotrasnpiration over the whole basin might help 

improve the accuracy of flow predictions. The same might be true with 
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subsurface stormflow (or interflow), which is not part of HMS capabilities . It 

corresponds to some of the water that, during a storm, infiltrates the soil and 

moves laterally through the upper soil zones until it enters the stream (Bedient 

and Huber, 1989). Including this component in the ModClark model might be 

worth considering. 

The modified Clark method, as developed by HEC, is based upon the 

assumption that flow velocity is constant over a subbasin (see Chapter 4). This 

assumption allows the flow path length to serve as the cell travel time index in 

the calculation of the travel time for each subbasin cell. Maidment et al. (1996) 

have proposed the incorporation of what they call a "spatially distributed 

velocity field" as an alternative to this assumption. In their theory, the travel 

velocity through a cell is assumed to be proportional to the cell slope and to the 

accumulated area of all cells contributing runoff to the cell. Calver (1993) 

studied ways to ameliorate the time-area runoff calculations. From the 

recognition that the different parts of a subbasin differ in their response to 

rainfall, he concluded that taking into account the topographic characteristics 

of a subbasin is needed to obtain acceptable simulations. In particular, he 

emphasized a difference in flow velocity throughout the subbasin with a 

decline with distance from the outlet. Beven et al. (1988) have also pointed out 

that basin morphology can act as a dominant control on water flow paths and 

influence hydrologic responses. Better estimations of cell travel times would 

then be achieved. The possible incorporation of such concept in the ModClark 

model might be worthy of further study, if a refinement of the method is 

pursued. 

Finally, one last aspect of the Mod Clark model needs to be pointed out. Flat 

terrain watersheds like Squaw Creek require a burn-in procedure onto the 

DEM. This necessitates even more knowledge of Arc/Info compared to what 

the GridParm user already needs to be familiar with. Because this could 

represent an obstacle to the development of the use of Mod Clark in the water 

resource community, HEC should consider trying to transform these 

manipulations into macros that could be added to the existing GridParm set of 

programs. One difficulty inherent to GridParm is the time it takes for each of 

the processing steps. Adding extra steps would only increase the working 

time. However, the procedure only needs to be performed once for the study 

watershed, unless a change in a subbasin outlet location is desired. 
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8.3. NEXRAD data 
Although the NEXRAD weather radar is becoming a familiar remote 

sensing technology to the public through Doppler images seen on television 

and on the Internet, the quality of the information it carries can leave a false 

impression. One needs to first remember that radars do not measure 

precipitation directly (Rinehart, 1991). Instead, radars measure the power 

reflected off objects in the path of the radar signal, including raindrops, 

snowflakes, and ice. Several potential errors may affect this measurement 

(James et al., 1993; National Weather Service, unknown date; Smith et al., 

1996a). The interception of the radar beam with the ground causes ground 

clutter and results in an overestimation of the returned power, hence of 

rainfall. A similar overestimation can be caused by an anomalous 

propagation of the beam when atmospheric conditions are not standard, 

increasing the echoes returned. Incorrect hardware calibration can also 

affect the accuracy of the rainfall estimate. The radar normally corrects the 

reflectivity value each volume scan so that a proper value is used to derive the 

rainfall rate. But external or internal noise can cause the reflectivity value to 

depart significantly from optimum calibration. The presence of mixed 

precipitation -- rain mixed with hail, snow, or sleet, can produce large 

reflectivity values, causing an overestimation of rainfall rates. Strong winds 

below the cloud base can blow rainfall away from the spot on the ground below 

the portion of the target being sampled. Evaporation below the radar beam can 

cause the radar to overestimate how much rain is actually falling on the 

ground. Therefore, it should be clear that the WSR-88D can never estimate 

rainfall rates with complete accuracy. There are some limitations to the radar 

because of these factors that cannot be totally controlled by humans. 

The need for correction of the rainfall estimates is thus obvious. Several 

researchers have started looking into this problem and the development of 

suitable corrective alogorithms and techniques is under way (Anagnostou et 

al., 1998; Borga and Di Luzio, 1992; Ciach et al., 1997; Crosson et al., 1996; Seo, 

1998). At the NWS, an emphasis has been put on quality control of the data. 

This is included in several precipitation-processing systems providing 

different levels of refinement in NEXRAD data (Smith et al., 1996a; Appendix 

B). NEXRAD reflectivity data can be corrected for ground clutter and 

anomalous propagation of the radar beam using a reflectivity outlier test 
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(National Weather Service, unknown date). A radar range correction can be 

applied to adjust the reflectivity of targets at long ranges, which tend to be 

reduced. During the precipitation accumulation process, a system checks for 

missing scans and if too many are missing, no hourly accumulation is 

performed. Another system can also check for outliers on the hourly 

accumulations, so as to remove clutter which has passed the previous 

reflectivity outlier test. Finally, accumulation data could be adjusted based on 

available raingage data by comparing hourly precipitation from raingages to 

associated radar values and estimating a mean field bias correction value 

using a Kalman filter. This would enable the elimination of errors in the 

NEXRAD data. Currently, the NWS is still working on the development and 

implementation of the adjustment of radar estimated with raingage data (Karl 

Jungbluth, personal communication, 1998). There is no correction by 

raingage data for the entire contiguous United States yet: this will happen in 

another phase of the NWS modernization process with NEXRAD. The gage 

adjustment of the data is only done at a few NWS offices at this point in time 

(Troy Nicolini, personal communication, 1998). On-line raingage networks 

will be needed for each WSR-88D's site and this is not in place yet. 

The quality of currently available NEXRAD data is therefore not the highest, 

which accounts for the difficulties encountered when modeling with it. 

Results obtained when using level I data as input to the rainfall-runoff model 

revealed a large variation in accuracy, a direct consequence of the poor quality 

of the level I data. Research results from HEC's previous studies at the 

Tenkiller lake in Oklahoma (Peters and Easton, 1996), the Salt river basin in 

Missouri (Hydrologic Engineering Center, 1996a), the Muskingum river basin 

in Ohio (Hydrologic Engineering Center, 1996c), and the Squaw Creek basin do 

confirm these trends. Sometimes radar estimates are accurate -- case of the 

Tenkiller lake simulations --, sometimes they aren't. This is reflected in the 

way the ModClark NEXRAD model performs: either it works well, or it 

doesn't. Other times, -- case of the Squaw Creek basin -- the lumped Clark 

gage model performs much better. The discharge peak timing may be early or 

late, and the peak can be 50% too high or 80% too low. Figure 8.1 shows some 

of the simulation results obtained in the Muskingum river basin (Hydrologic 

Engineering Center, 1996c). These results illustrate model shortcomings 

resulting from magnitude errors contained in Stage I NEXRAD data. In this 
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particular case, there was not enough radar-measured rainfall to produce the 

runoff volume needed to model the observed flow. This situation strongly 

resembles the one of the June 96 event in the Squaw Creek basin. Figure 8.2 

depicts some of the simulation results obtained in the Salt river basin study 

(Hydrologic Engineering Center, 1996a). There, again, results were not 

satisfactory. The ModClark computed peak flow was delayed when compared 

to the actual discharge, and did not have the same magnitude. This output is 

comparable to those obtained with the July 96 and 97 runs in the Squaw Creek 

basin. It is also interesting to note that even when using Stage III data for the 

ModClark simulations -- the Tenkiller case --, some problems were still 

present: the magnitude of the computed flows was found to greatly depend on a 

correct estimation of loss rates, which gave uncertainty to the results (Peters 

and Easton, 1996). 

Therefore, the thinking here is that radar rainfall estimates are not 

developed sufficiently yet for making reliable quantitative forecasts. One needs 

to wait before using this type of data for reliable water-control decisions, 

otherwise one will inevitably face difficulty in disentangling the effects of 

errors in the radar simulations. The use of NEXRAD data in hydrologic 

modeling at this point in time appears to be somewhat premature: researchers 

need to wait for improved data quality. The level I data used in the Squaw 

Creek project seemed to contain a lot of errors in it. Using Stage III in the 

simulations could not be done due to logistic reasons. The Minnesota RFC 

indicated that stage III being directly created from Stage I, errors in Stage I 

would also appear in Stage III. Hence, using Stage III would not have 

brought any improvement to the current radar simulation results at this point 

in time. Although central Iowa has no mountains that would have been a 

cause of clutter, there probably was some kind of clutter within the Stage I 

data. The humidity of the air, usual in the summer months, might have 

contributed to the presence of some clutter. The Johnston radar has also been 

installed a short time ago, so it might be possible that the calibration of the 

hardware system is not completely mastered yet, and that more experience is 

to be gained by the NWS radar operators. One needs to keep in mind that the 

WSR-88D is still a young technology. 

The advent of NEXRAD however remains a progress in the field of water 

resources because of its high spatial and temporal characteristics. 
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Figure 8.1. Simulations for the North Branch Kokosing reservoir subbasin 

in the Muskingum river basin, Ohio (reprinted from Hydrologic 

Engineering Center, 1996c, p. 23) 
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Figure 8.2. Simulations for Spencer Creek in the Salt river basin, Missouri 

(reprinted from Hydrologic Engineering Center, 1996a, p. 22) 
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Precipitation data is now available in a format that did not exist before. One of 

the greatest advantages of radar-estimated rainfall is that it offers continuous 

areal coverage over the radar's coverage umbrella. The NEXRAD coverage is 

nearly total over the United States (National Weather Service, unknown date). 

This constitutes a vast improvement over what was available in the past. 

Raingage networks being sparse over some areas of the country, this new 

availability of precipitation data is an improvement. If there are no raingages 

over a particular basin or very few, the availability of NEXRAD rainfall 

estimates makes it possible to try and predict if a flood is going to occur. This, 

of course, implies the necessity for radar error sources to be minimized. 

Compared to radar estimates, raingage estimates offer the advantage of 

being ground-based. A major problem, however, with isolated raingages is 

that they often miss significant precipitation. Many times, a rain shower will 

simply miss the bucket. It is also possible that several types of gages are used, 

with different levels of reliability, and different techniques for gathering and 

estimating rainfall. Errors can thus be easily incorporated in the collected 

data. Raingage estimates are most useful when the radar is subject to 

significant errors such as hail contamination, and when precipitation covers a 

large area uniformly. 

It thus appears that merging both systems should enable us to obtain the 

point accuracy of gages and the spatial coverage of radar. A combination of 

both is probably the best situation for modeling. It is very likely that, in the 

future, when many raingage networks and radars come on-line, the data will 

be better corrected, resulting in reliable hourly estimates in most areas. It 

goes without saying that the technology has not reached this point yet, and that 

both data types will have to have profound quality control. For flood prediction 

purposes in the Squaw Creek basin, the City of Ames should ideally be able to 

rely not only on its raingage data, but also on radar data for detecting spotty 

rain showers. The current five raingages installed by the City in the basin 

provide quality input to the HEC-1 model. However, clouds can still spare the 

gages, incorporating errors in the predictions. NEXRAD's advantage is 

certain. Combining gage data with radar information can lead to improved 

precipitation estimates over the gaged area. 

As mentioned previously, NEXRAD radar data can be commonly found in 

the form of images. The availability in digital format is a totally different 
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issue. The problems encountered in this project in obtaining the radar data 

revealed the difficulty in getting NEXRAD rainfall data in digital format. In 

fact, this difficulty constitutes an obstacle. 

Several programs are available -- particularly on the Internet -- for the 

display of NEXRAD images. But there are no programs permitting the 

retrieval of the digital data corresponding to these visual displays. One can, 

for example, obtain stage II digital data on 8 mm tapes from the NCDC. 

However, the NCDC does not provide any software support for the extraction of 

such data. The fact that NEXRAD data is a brand new rainfall data type most 

likely accounts for this lack of associated software. Not many people are 

currently modeling using this type of data, so the pressure on the NCDC may 

not be high. However, it will probably be needed to remedy this lack of product 

use and software support in a near future because the water resource 

community will certainly be using this type of data more and more. The 

current situation is not favorable for the use of NEXRAD data in hydrologic 

modeling. 

Another issue concerning the use of gridded precipitation is the 

georeferencing of the precipitation cell coordinates. NEXRAD uses the HRAP 

system, which is well suited for the NWS, in a polar stereographic conformal 

projection. This coordinate system is very uncommon in hydrologic 

applications, which makes the conversion from this system to another a 

necessary step (Bradley, 1998). In the Squaw Creek research work, for 

example, the generation of the HRAP grid over the watershed had to include 

its creation in the Albers projection, used in the other parts of the work. It is 

mainly because of the absence of uniformity of cell size within the grid that 

HEC is advocating the use of a standard geographic grid instead (Evans, 1996). 

HEC's proposed Standard Hydrologic Grid (SHG) has cells of equal area 

throughout it coverage, and is based on the Albers equal-area projection, 

probably the most commonly used equal-area projection. In the future, the 

NWS may have to rethink the format the HRAP grid comes in, if NEXRAD is to 

be widely used within the water resources community. 

NEXRAD precipitation products are not widely available outside the NWS 

setting. One can obtain archives in digital format -- case of the Squaw Creek 

project -- from the RFC, but this requires a lot of memory space. In addition, 

some hourly data may be missing, due to technical troubles within the 
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operation of the NEXRAD data. This was the case in the project here. These 

facts are important to take into consideration when planning a project. The 

archives are also not on-line, not publicly available, and difficult to obtain 

without some connection with the RFC . It seems that no formal archival 

system has been established to distribute the data either. So one can say that, 

up to this date, archives have not been designed to meet the needs of the water 

resources community (Bradley, 1998). This situation is not ideal and some 

organizational improvement at the level of the NWS RFC seems necessary. If 

the goal is to increase the use of NEXRAD precipitation in real-time and in 

long-term planning, better archives and availability of all stages and products 

are necessary otherwise this would constitute a serious impediment to the 

development and use of NEXRAD in water-related applications . 

At this point in time, and taking into consideration the different obstacles 

represented by the use of NEXRAD data, rainfall-runoff modeling using this 

new type of rainfall data is just beginning. NEXRAD data is still not 

completely "mature" from a technological standpoint. Distributed models need 

to be tailored to the spatial characteristic of the data. This explains why, 

currently, the number of hydrologic modeling research projects using 

NEXRAD data as input is very small. This type of modeling is in fact 

completely new. The quasi-distributed ModClark model is a fairly recent 

model, and HMS is a software still in its infancy, correcting its technical 

problems and adding more features to its programs. This is why so many 

problems were encountered during this research project, particularly with the 

obtainment of NEXRAD data, its processing, and the use of HMS. 

8.4. Other modeling difficulties 
Current obstacles in using NEXRAD data for modeling have been 

highlighted. Besides the number of malfunctions, typical of new software, 

encountered when running HMS, a few other problematic aspects concerning 

modeling with HMS are worth mentioning. To be able to use ModClark, one 

needs to be able to use GIS for the determination of the cell parameter file . 

This entails the use of Arc/Info on a Unix platform, since the GridParm 

software is only tailored to this system. These skills and resources may not 

always be available to any water resource project team. In addition, minimum 

understanding and knowledge of HEC-DSS is required, whether one will 
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create raingage data DSS files or need the NEXRAD data in this format. Flow 

data can be obtained in different ways, which requires knowledge of different 

program utilities in DSS, complicating data manipulation for a researcher 

without this type of skill. Up to this date, the HEC program permitting the 

conversion of NEXRAD radar data into DSS format is also not publicly 

available. Hence, it is clear that we stand at the beginning of the development 

of these techniques and software. Much needs to be done to render modeling 

with NEXRAD a reasonably "easy" task if the goal is to make HMS Mod Clark 

modeling common in the water resource community. 

Due to the fact that NEXRAD data is not readily available in digital format 

and not available at all in real-time (on-line), and that there is currently no 

automatic link between DSS and HMS to ease the data transfer, there is no 

possibility, at this time, of using NEXRAD data and Mod Clark in a real-time 

manner. The research work here illustrates this and constitutes, in fact , a 

first step towards this direction. HEC is still at the beginning of having its 

Next Generation software well functioning. More improvement is needed to 

achieve this level of real-time flood forecasting. 

The City of Ames currently operates its HEC-1 flood prediction model in a 

real-time manner by inputting real-time raingage data. Since they absolutely 

need to have a real-time model, they cannot use ModClark yet. The absence of 

link between this data, the DSS system and HMS, as well as the fact NEXRAD 

data is not available on-line and directly linked to DSS, are major impediments 

to using radar data in a real-time flood forecasting mode. 

In addition, the ModClark model needs to undergo some calibration in the 

first place, so as to make it as reliable as possible. The successful application 

of a hydrologic model depends on how well the model is calibrated. The 

calibration done on the lumped Clark model might be helpful for the 

calibration of the ModClark model, since certain parameters are used in both 

models. However, hydrologic model parameters are inherently tied to the 

space scale at which they are estimated (Finnerty et al., 1997). The difference 

in spatial resolution between the two Clark models may call for some caution 

in infering values for the ModClark system, based on the lumped Clark one. 

Another important point is that calibration requires several years of historical 

data. According to Finnerty et al. (1997), at least 8 years of historical data are 

needed for simulation and comparison to observed data. An additional 8 years 
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of historical data are also recommended for model verification by these 

authors. Currently, about 3 years of NEXRAD data would be available from 

the Johnston site for calibration of the Squaw Creek ModClark model. This is 

an insufficient length of time for calibration and validation of model 

parameters. It should as well be noted that out of these years of data, the 

number of events might be small if the year was dry or some storms too close to 

one another to allow for accurate modeling. Another 20 years of data are thus 

needed to have a reliable ModClark model. Follow-up research concentrating 

on this aspect is thus a necessity. 

At this point in the development of the Squaw Creek Mod Clark model, the 

use of hypothetical storms had pointed out the need for a slight modification of 

the time parameters related to the flood flow travel, which were causing a later 

peak. This finding was useful because it allowed for the adjustment of the 

parameters involved in the finding. The possible slight overestimation of the 

HRAP cell travel times also indicated that their determination can be quite 

difficult in a flat terrain area, even though a burn-in procedure was used to 

refine the GIS computations. Further research is needed on the tuning of the 

ModClark parameters in this project because this first-generation adjustment 

was solely done on fictitious data. Real data is necessary to validate the 

findings and refine the values. In addition, a different set of these parameters 

might need to be determined for non-flood situations. When the banks are not 

full, the velocity of water is slower, which would correspond to different values 

for the routing parameters. Such cases need to be studied. The first­

generation adjustment of the model also did not try to tune the Muskingum x 

value. A value of 0.2 being generally suited to streams, no attempt was made 

to try and adjust these values. This could however be studied in the future, to 

determine if an adjustment is needed there. As of now, the Squaw Creek 

modClark model is functioning properly, but further calibration and 

verification are indispensable. 

The calibration done in HMS for the lumped Clark model could be named a 

"first-generation optimization". One reason is that refinement of the 

parameter values can be achieved using more historical events and 

verification is of course needed with additional storm data. One also needs to 

point out that the HMS optimizer feature might require some software 

improvement. Crashing was a major problem encountered during the 
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optimization runs. Optimized parameter values did not always seem to reflect 

the actual physical characteristics of the basin, though the objective function 

value was then low. Several results were discarded because values seemed 

very unrealistic, or causing instability within the routing, while the 

corresponding objective function value was low. Others were also discarded 

because they would not improve the peak time and magnitude at all, though 

they were accompanied by a low objective function value. The parameters 

chosen in the end as best optimized did not create instability but did not seem to 

be the best possible values. It was very difficult and tedious to determine the 

minimum and maximum soft constraints. One reason might be that event 

though an automatic optimization was used, it still required the skills needed 

for a manual calibration. Manual calibration, using a trial-and-error process 

of parameter adjustments, requires a good deal of exerience (Sorooschian and 

Gupta, 1995). The logic by which parameters should be adjusted to improve the 

match simulated-observed is difficult to determine. In fact, an automatic 

optimization algorithm may try to compensate for data errors by parameter 

adjustments with the results that parameter values often become physically 

unrealistic, and give poor simulation output when applied to a period different 

from the calibration period (Refsgaard and Storm, 1996). It is also difficult to 

know when the calibration process should be terminated. The manual 

procedure involves a great deal of subjective judgement; different persons may 

obtain very different parameter values for the same basin (Sorooschian and 

Gupta, 1995). It was found that the HMS optimization procedure does require 

the same skills as a manual optimization. A lack of years of experience may 

have been responsible for not getting the best possible optimized values for the 

lumped Clark model. The problem of the algorithm compensating data errors 

with value adjustments leading to physically unrealistic parameter values 

may have played a role. Finally, the accuracy of the input data in the first 

place may have prevented the obtainment of a best fit between simulated and 

observed hydrographs. 

One could also add that the data chosen for the calibration work might not 

have been most appropriate. Sorooschian and Gupta (1995) emphasize that 

little is known about what constitutes "good" calibration data. They indicate, in 

particular, that: "For example, if the data selected are from a relatively dry 

year, certain runoff processes may not be activated, therefore the model 
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response will be insensitive to some of the parameters that determine the 

partitioning of moisture between the various subsurface and overland flow 

components. However, if the data selected are from a year that is so wet that 

the watershed remains saturated most of the time, the model response may be 

insensitive to other subsurface flow controlling parameters". Referring to the 

discussion about surface storage in the northern part of the Squaw Creek 

basin, one can see the difficulties in doing a reliable calibration. Maybe two 

types of sets of parameters, corresponding to each above situation, would be 

needed. More research on this topic would certainly help. The choice of June 

96 for the optimization was because of a restrained possiblity of choice and 

might not have been the best. 

For the ModClark model to be successfully implemented in the future, 

further work needs to be done on its calibration, based on the preliminary 

estimate of the parameters and the first-generation calibration performed. 

This is necessary because models, by definition, are only a "rough" 

representation of reality, only incorporating certain parameters, judged most 

important among the high number of physical and process factors actually 

involved in the basin system. The model can never be completely exact, but its 

functioning can be tuned to the best possible performance, independently of the 

quality of the input data. 

8.5. Flood mitigation alternatives 
Hydrologic modeling for flood forecasting appears to be a valuable tool for 

early warning that can allow a certain minimization of the damage to property 

and potential population endangering. It is one of several flood control 

alternatives. These measures are divided into two groups (Yevjevich, 1994a). 

Structural preventative measures include cloud seeding (to suppress excess 

rainfall), flood water management through the construction of levees, dikes, 

flood walls, reservoirs or detention basins, floodplain management (forest, 

grass and general soil erosion control to preserve the flow capacity of the 

river) , and channel widening or diversion. Such options have been explored by 

the City of Ames' officials. Dam projects on the Skunk River north of Ames 

and near Gilbert on the Squaw Creek have been examined on several 

occasions, but rejected due to high cost and opposition at the local level (see 

Chapter 3). Controversy also exists regarding their usefulness. The same is 



www.manaraa.com

112 

true for levees that could be constructed along the stream. As far as the 

floodplain management aspect is concerned, the possibility of installing 

riparian buffer strips along Squaw Creek would be worth considering. 

Riparian buffer strips are vegetated areas - usually a mix of native grasses, 

shrubs, and trees - adjacent to a stream (Anderson and Masters, 1992; Welsch, 

1991). In agricultural watersheds, such adjacent ecosystems interact closely 

with the agricultural fields. However, intensive agriculture has led to the 

clearing of these natural corridors along the streams: this is one of the reasons 

modern agriculture is associated with the acceleration of the streamflow in the 

landscape. The riparian zone plays a critical role in the watershed's 

hydrology because it collects all water outputs from the drainage area (Smith, 

1992; Welsch, 1991). Most research to date on riparian zones has found high 

infiltration rates, which indicates that a non negligible portion of the surface 

runoff from the upland fields gets infiltrated and lost to subsurface flow 

(Inamdar and Dillaha, 1994; Peterjohn and Correll, 1984). A reduction in flow 

velocity due to the increased surface roughness within the vegetation in the 

buffer has also been noted. Such attributes cannot be put aside when 

contemplating possibilities for flood potential reduction. Installing buffers 

strips along Squaw Creek might thus represent one sure way of reducing the 

speed with which water flows through the watershed, hence making the basin 

less flashy. Up to now, no project involving the installation of riparian buffers 

strips has been attempted. It would require the establishment of precise 

planning and maintenance guidelines so as to ensure successful results 

(Jeanne, 1994; Schultz et al., 1996). So far, the City seems to be focusing on 

non-structural flood control alternatives. 

Non structural preventative measures include the forecasting of incoming 

floods from modeling and government incentives. Government incentives deal 

with the regulation of land use in the floodplain and would seem to carry a 

heavy weight in the total damage caused by a flood event. It is clear that the 

forecasting of flooding events does not deal with the source of the problem, 

primarily the intensive human use of floodplains. Human use of land 

increase flood risk in two ways. First, the filling of wetlands, dredging or 

channelizing of rivers, and urban development anywhere in a watershed 

increase the speed and force with which rainfall flows across the land and into 

rivers. Second, the intensive use of floodplains for agriculture, transportation, 
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and residential development exposes more and more valuable property to 

damage from flooding (Montgomery, 1986). Faber (1996) relates an interesting 

parable that a farmer living along the Missouri river told him. The farmer 

compared life along the river to a bag containing 99 clear marbles and 1 black 

marble. Every time you pull out one of these marbles and it is black, you have a 

100-year flood. After each draw, you put all 100 marbles back into the bag and 

shake it up. You could pull the black marble out again two or even three times 

in a row. Floodplain development increases the number of black marbles in 

the bag. Local juridictions and landowners' actions up and own the river 

system also take an active role in this process. Anyone who fills a wetland, 

improves field drainage, builds or raises a levee, paves a parking lot, or 

channelizes a stream is eventually pulling out a clear marble and returning a 

black one, gradually increasing everyone's chances of getting a black marble. 

In the real world, the accumulation of uncoordinated land use decisions 

across a watershed means that a house considered likely to flood once every 100 

years when first bought may be likely to flood every 50, 30 or 10 years by the 

time the mortgage is paid off (Faber, 1996). Since virtually all land belongs to 

some watershed, all land use decisions have some potential impact on 

flooding. This is where the difficulty for policy-makers resides. 

Planning and zoning within the floodplain should focus on eliminating 

some damage centers. Some land use, such as certain kinds of agriculture, 

railroads that must load and unload freight from different locations, may 

always have to be located in floodplains. But the relocation of endangered 

private houses and business buildings that are at risk of flooding or have 

already been flooded could help alleviate the flood threat and lower disaster 

relief costs. However, federal support towards this direction is currently 

lacking. It is described by the following quote: "The market is saying you're 

nuts to live in a floodplain, but the Federal Government is saying it's not only 

OK, but we'll make it affordable" (Faber, 1996). The National Flood Insurance 

Program (NFIP), administered by the Federal Emergency Management 

Agency (FEMA) (FEMA, 1997b), provides no incentives for floodplain 

management. By waiving the requirement that uninsured people purchase 

flood insurance as a prerequisite for receiving federal disaster assistance, the 

NFIP probably encourages further development in flood-prone areas by 

lowering owners' risk that floods would ruin them financially (Faber, 1996). 



www.manaraa.com

114 

Buying out people's homes and relocating them on higher ground is a costly 

solution. Federal grants are available, but require local governments to 

provide a matching amount of money. The practice is thus limited. In Ames, 

for instance, about 30% of the city's total land area is prone to flooding 

(Armour, 1994). Acquiring all concerned buildings would be unrealistic. 

Moreover, the City does not have enough funds to cover such high costs. Only 

a few homes in the flood-prone area have been bought (O'Donnell, 1994). 

Possibly no one should have ever started building in the floodplain. But this 

is a result of things done as a civilization and one cannot change the past. 

What might appear to be in the realm of possibilities is a regulation of current 

building in the flood-prone area. There seems to be a growing use of the 

floodplain for commercial and residential use in Ames. The land is available 

and less expensive, so the demand for it is high. Requiring these property 

owners to elevate their buildings above the flood stage is a good idea, but does 

not eliminate the risk of flooding by any means. Current overall vulnerability 

to flooding has probably increased or is at least the same as before. This is due 

to the amount of development already there, and to the fact that population 

growth and urbanization are so quick that adequate planning and regulations 

cannot be established soon enough to prevent unwise use of floodplain areas. 

In that sense, eliminating all building in the city's floodplains would be 

unrealistic. Ames local officials should try and concentrate their efforts 

towards strictly regulating such land use. Such a strict regulation should 

reflect a "wise" floodplain management plan. It should aim at achieving a 

reduction in the loss of life, disruption and damage caused by floods, and the 

preservation and restoration of the natural resources and functions of the 

floodplains, which in turn lessen damage potential. Management ordinances 

could require that buidlings be elevated above a certain elevation 

corresponding to the 100-year flood. Floodproofing homes and businesses -by 

installing water-tight seals or barriers, building with water-resistant 

materials ... - need to be encouraged by some community-sponsored programs. 

One needs to remember that no matter what flood-control measures are set 

up, Mother Nature cannot be fooled. As long as there are going to be rains, 

there are always going to be some floods. And people are going to get flooded 

because of where they are located. But they are still going to build and that is 

probably as natural as flooding itself. The best protection might be to pray that 



www.manaraa.com

115 

it does not rain hard, which is probably the most cost-effective solution. What 

can surely be done is to raise people's awareness of all the aspects of floods. 

Public education about the continuing or increasing risks of buiding in the 

floodplain, how to react when faced with a flood, etc., would need to be 

incorporated in the City's flood management approach. Floodproofing the 

buildings located in the floodplain, and regulating land use in the flood-prone 

areas also are things that can be done. Planning a project that would establish 

vegetated buffer strips along Squaw Creek and decrease the flood potential 

could be another feasible option. Finally, the use of a computerized flood­

warning system is an excellent flood-control tool when risk to life and property 

cannot be eliminated. Its full operationality is critical and investing in its 

refinement, particularly its calibration, is essential. 
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CHAPTER 9. CONCLUSIONS AND PERSPECTIVES 

Completion of this research project showed that the future of the use of 

HEC-HMS, ModClark, and NEXRAD data is promising because, even though 

the technology is currently not at its full speed, they represent a new era in the 

history of hydrology. Currently, no other quasi-distributed or distributed 

model using gridded precipitation like ModClark data are in use -- the use of 

raingage data is more common --, so the novelty aspect of this research is 

obvious. The high resolution of this precipitation data type is unprecedented 

and affords new oppotunities for increasing the spatial detail with which 

rainfall-runoff processes are simulated. There is no doubt that the use of 

NEXRAD is an essential complement to raingages. Similarly, the new HEC­

HMS will see more and more applications within the water resources field. 

The major advantage of the Mod Clark model is that it allows the use of 

NEXRAD data for any basin. This is of particular importance when 

considering the fact that many basins in the country have few or no raingages 

available to obtain precipitation data, whereas the coverage of NEXRAD is 

almost nation wide. A flood prediction can now be made in such cases if a 

Mod Clark model is developed for the basin in question. The development of the 

model on a flat terrain -- in particular the application of the GridParm 

procedure with a burn-in -- like central Iowa demonstrated that the ModClark 

model can be developed anywhere, even on flat areas. ModClark can thus ease 

the use of new technologies like NEXRAD, while not being drastically different 

from current known watershed models. 

The work done here really represents a major step towards real-time flood 

forecasting. But there are still obstacles barring full implementation of 

ModClark as a real-time flood forecasting tool. The actual rainfall-runoff 

model has been developed but additional components and program 

enhancements are needed for full forecasting realization. As of now, there is 

no direct link between HEC-HMS and HEC-DSS to allow for easy input of 

rainfall data: this automation is needed. NEXRAD data is also very difficult to 

obtain, particularly in digital format. So the NWS would need to review its 

data management structure at this level. There is also no possibility of 
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obtaining NEXRAD data on-line, which might be a pressing need in the near 

future within water resource community users. 

The main findings from this particular Squaw Creek research study were 

the following. HMS simulations with raingage data were satisfactory in terms 

of peak timing. Only the June 96 flood's predicted flow was close to the actual. 

The overprediction for the July 96 and 97 events were most likely caused by 

inaccurate raingage data, raingages being unable to capture the spatial 

distribution of a rainstorm. ModClark simulations with radar data led to 

predicted flows either off in magnitude by 85%, or early or late by about 12 

hours. It was however clear that the radar captured the spatial distribution of 

the rainfall better than the raingages. The subsequent analysis of radar data 

revealed that rainfall data was not always present at the right times, and not 

in intensities reflecting reality. The testing of the functioning of HMS with 

fictitious radar data indicated that HMS ModClark was functioning well and 

allowed the detection of a slight delay in the time of peak. These "erractic" 

results of the radar data simulations led to the following conclusion. Major 

improvements on the quality of NEXRAD data (improvement of algorithms to 

control the data quality; corrections with raingage data) are a necessity, for the 

use of this data in hydrologic modeling at this point in time leads to totally 

unreliable high water and flood predictions. This conclusion is similar to 

those drawn from both the Salt River basin and the Muskingum River basin 

ModClark applications by HEC. Some commonalities have surfaced from 

these studies and the Squaw Creek project. It is evident that Stage I radar 

rainfall is of limited value for flood forecasting. Runoff hydrographs generated 

using Stage I data can be grossly in error compared to observed hydrographs, 

and even compared to hydrographs generated using gaged rainfall. The trend 

is that Stage I radar rainfall can be very inaccurate. 

The ModClark model, in its HMS environment, would also probably benefit 

from certain improvements. A gridded loss rate curve number feature might 

lead to better simulation results. The installation of a continuous soil moisture 

accounting system may help model each situation with more adequacy. The 

model also does not take into account evapotranspiration and subsurface flow, 

which might be useful. The addition of a reservoir type of component to the 

model might also help take into account certain important phenomena of 

surface water storage occurring in the northern portion of the watershed. 
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More research is needed on this aspect. The HMS software itself can use 

refining for its future versions because several malfunctioning problems were 

discovered at all stages of this research project. In addition, the application of 

the GridParm procedure for other basins would benefit from the incorporation, 

in its set of programs, of an automation for the burn-in procedure, necessary 

for basins on flat terrain. 

Follow-up research is needed concerning the calibration of the ModClark 

model. A model can only be reliable if its calibration has been the subject of 

extensive study, along with an adequate amount of verification runs. The first ­

generation optimization done on the lumped Clark model requires further 

work so its use as a comparison tool for runs with ModClark can be more 

reliable. It may also help define better values for the Clark parameters. As far 

as the adjustment work done on the ModClark model is concerned, it does need 

storm data to be tested on because all adjustments were made on fictitious 

radar data. It however constitutes a preliminary adjustment of the ModClark 

model. NEXRAD being new, little data is currently available. One thus needs 

to reasonably wait for another 10 years of data before the ModClark model can 

be reliable. Ideally, another 10 years of data are also needed to verify these 

calibration results. Once Stage III is reliably ground-truthed with raingage 

data, it will also be interesting to use it in the simulations. 

The Squaw Creek ModClark model was developed so the three subbasins' 

outlets would correspond to the three gage stations used by the City of Ames. 

Once HEC-HMS has the additional feature of generating stage discharge 

curves incorporated in its system, the ModClark model will then be useful to 

the City of Ames for flood predictions. This will of course only occur when a 

relative confidence in the quality of radar data will have been securely 

established. So far, the City officials still use their HEC-1 model. 

Floodproofing buildings in the sensitive zones and regulating land use in the 

floodplain are the other best flood mitigation alternatives. 

In conclusion, developing the Squaw Creek modClark model was a 

challenge, the necessary price to pay when one deals with cutting-edge 

technologies. Logistic-related obstacles were numerous. Major ones included 

the obtainment of radar data, its processing, its analysis, and the problems 

encountered with the GridParm and HMS software. Overall, HMS and the 

Mod Clark model function well, and it is the quality of NEXRAD data that is at 
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fault. One needs to separate the evaluation of the method from that of the 

radar rainfall product used. The development of the model constitutes a real 

step forward, for only calibration and verification are now needed for the 

reliable use of it for flood forecasting, once all technological aspects will have 

been taken care of (automatic link to DSS, on-line NEXRAD). One however 

needs to wait and hope that the improvement of the quality of radar data will 

happen soon as well as the increased availability of all the data stages, for their 

use in hydrologic modeling at this point leads to unreliable results. What is 

interesting to note is that as improved radar rainfall products become 

available, they can be used in the current ModClark capability without 

modifications. 

Finally, one essential consideration about modeling should be borne in 

mind. Rainfall-runoff modeling is a difficult and challenging task because of 

the complexity of the physical processes within the hydrologic cycle, the 

heterogeneous characteristics of the watershed, and the uncertainty 

associated with model inputs. The skills of the modeler can even be more 

important than the model itself. Loague and Freeze (1985) have stated the 

following, which is very true: " In many ways, hydrologic modeling is more an 

art than a science, and it is likely to remain so. Predictive hydrologic modeling 

is normally carried out on a given catchment using a specific model under the 

supervision of an individual hydrologist. The usefulness of the results 

depends in large measure on the talents and experience of the hydrologist and 

his understanding of the mathematical nuances of his particular model and 

the hydrologic nuances of his particular catchment." This needs to be taken 

into account when doing flood forecasting modeling. Modeling results can be 

valuable information which, when considered in relation to the current state of 

the basin and the meteorological forecasts, can aid in the making of reasonable 

flood warning decisions. However, there will always be significant 

uncertainty associated with model predictions, and careful interpretation of 

model results is essential. 
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APPENDIX A. MODCLARK BASIN CHARACTERISTICS INPUT FILE 

SUBBASIN: A 
GRIDCELL: 615 519 36.61 4.57 
GRIDCELL: 614 519 34.17 0.73 
GRIDCELL: 614 518 29.89 15.00 
GRIDCELL: 615 518 24.21 10.72 
GRIDCELL: 613 518 28.06 2.77 
GRIDCELL: 613 517 24.26 10.12 
GRIDCELL: 616 518 24.19 1.36 
GRIDCELL: 614 517 23.92 18.25 
GRIDCELL: 615 517 19.29 18.25 
GRIDCELL: 616 517 16.78 5.58 
GRIDCELL: 613 516 21.67 14.91 
GRIDCELL: 614 516 17.19 18.24 
GRIDCELL: 615 516 13.55 18.24 
GRIDCELL: 616 516 9.55 18.08 
GRIDCELL: 617 516 8.30 5.97 
GRIDCELL: 613 515 22.14 11.30 
GRIDCELL: 614 515 17.07 14.93 
GRIDCELL: 615 515 10.20 16.65 
GRIDCELL: 616 515 4.52 17.83 
GRIDCELL: 617 515 4.78 5.29 
GRIDCELL: 615 514 9.62 0.02 
GRIDCELL: 615 514 8.72 0.19 
GRIDCELL: 616 514 6.57 0.73 
GRIDCELL: 616 514 0.79 0.21 
END: 
SUBBASIN: B 
GRIDCELL: 617 516 17.83 0.13 
GRIDCELL: 617 515 15.14 12.15 
GRIDCELL: 614 515 28.71 2.87 
GRIDCELL: 618 515 14.60 7.45 
GRIDCELL: 614 514 27.71 10.93 
GRIDCELL: 615 515 26.18 1.58 
GRIDCELL: 615 514 24.10 18.01 
GRIDCELL: 616 51S 17.Sl 0.36 
GRIDCELL: 616 514 17.33 17.28 
GRIDCELL: 616 515 14.75 0.04 
GRIDCELL: 617 514 11.92 18.21 
GRIDCELL: 618 514 10.44 18.21 
GRIDCELL: 619 SIS 11.97 0.22 
GRIDCELL: 619 514 8.96 8.74 
GRIDCELL: 614 513 28.21 5.25 
GRIDCELL: 615 513 24.04 15.71 
GRIDCELL: 616 513 18.13 17.99 
GRIDCELL: 617 513 10.71 18.20 
GRIDCELL: 618 513 5.30 18.20 
GRIDCELL: 619 513 4.54 6.54 
GRIDCELL: 615 512 24.84 1.43 
GRIDCEll: 616 512 24.40 0.14 
GRIDCELL: 616 512 15.90 1.16 
GRIDCELL: 617 512 11.28 3.83 
GRIDCELL: 618 512 4.62 3.28 
GRIDCELL: 619 512 0.85 0.38 
END: 
SUBBASIN: C 
GRIDCELL: 616 513 23.84 0.22 
GRIDCELL: 616 512 22.81 16.90 
GRIDCELL: 615 512 29.75 3.74 
GRIDCELL: 617 512 16.73 14.36 
GRIDCELL: 618 512 11.13 14.91 
GRIDCELL: 619 512 5.43 14.14 
GRIDCELL: 615 511 29.35 0.03 
GRIDCELL: 616 511 22.28 2.93 
GRIDCELL: 620 512 2.32 1.32 
GRIDCELL: 617 511 16.33 12.48 
GRIDCELL: 618 511 9.59 12.47 
GRIDCELL: 619 511 4.28 8.74 
GRIDCELL: 620 511 0.65 0.56 
END: 
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APPENDIX B. OVERVIEW OF THE NEXRAD SYSTEM 

The following overview of the NEXRAD system is not exhaustive. It only 

contains important material relevant to rainfall-runoff simulation knowledge 

using the ModClark method. 

The Weather Surveillance Radar -- 1988 Doppler (WSR-88D) -- system is the 

product of the Next Generation Weather Radar (NEXRAD) program, a joint 

effort of the US Departments of Commerce, Defense and Transportation 

(Cappelletti et al., 1996; Crum and Alberty, 1993; Crum et al., 1993; Shedd and 

Fulton, 1993). Installed WSR-88D systems provide Doppler capabilities -in 

particular the measurement of the velocity of the target-, increased receiver 

sensitivity, and real-time display of base and derived products that enable 

forecasters to improve the detection of and give greater advanced warning of 

severe weather events. Currently, work is under way at the NWS 

headquarters, the National Severe Storms Laboratory (NSSL) and the WSR-88D 

Operational Support Facility (OSF) on a wide array of tasks to integrate the 

WSR-88D functionality into the existing computer platform (National Weather 

Service, 1997; News and Notes, 1996; Smith et al., 1996). 

Unlike older radars, the WSR-88D system is made up of several computer 

controlled equipment groups which perform unique functions in the overall 

operation of the radar. The concept behind the WSR-88D system is that it 

estimates the precipitation rate from the sensed reflectivity. The NEXRAD 

system is composed of three major components: the Radar Data Acquisition 

(RDA), the Radar Product Generation (RPG) and the Principal User Processor 

(PUP) (Crum and Alberty, 1993; Crum et al., 1993; National Weather Service, 

unknown date; Rinehart, 1991). The RDA is the origination point of the radar 

data and comprises four subcomponents: the transmitter -- pulse generation 

and transmission --, the antenna -- broadcasting signal and intercepting 

returning energy--, the receiver -- amplifying the signal intercepted by the 

antenna--, and the signal processor -- suppressing ground clutter and 

converting the signal into digital data. The RDA thus acquires and processes 

Doppler radar data before distribution to the RPG. The RPG is a multi­

function unit that processes these base data to produce weather products 
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required by meteorologists. These products include base products -- reflectivity 

and velocity based products ... -- and derived products produced from the digital 

data with the use of algorithms. Products are sent to users via narrow band 

communications. PUPs are the hardware and software used to acquire, 

process and store the products received from the RPG. The PUP workstation is 

where WSR-88D products are displayed and manipulated by meteorologists. 

WSR-88D radars provide average precipitation measurements on the 4 km 

Hydrologic Rainfall Analysis Project (HRAP) grid defined by the NWS (Reed 

and Maidment, 1995). The HRAP cell coordinates are defined in the image 

plane of a secant polar Stereographic map projection on a spherical, earth­

centered datum of radius 6371.2 km. The secant polar Stereographic 

projection has a standard latitude of 60° North and a standard longitude of 105° 

West. The fact a conformal map projection is used to create different cell sizes 

ranging from 3.5 to 4.5 km (Evans, 1996). Each radar has a 230 km range and 

the precipitation data generated can be for I-hour, 3-hour or storm total 

precipitation durations (Shedd and Fulton, 1993; National Weather Service, 

unknown date). 

The NWS has defined different stages of precipitation data processing for 

operational use (Crum, 1995; Crum et al., 1993; Fulton, 1997; Hudlow et al., 

1991; National Weather Service, unknown date; Shedd and Fulton, 1993). A 

variety of complex processes is involved with each NEXRAD stage. Stage I 

processing, mainly the integration of rainrate intensity maps over time to 

produce hourly rainfall accumulations, is performed at the actual radar site. 

Stage I is a radar-only precipitation estimate obtained from the receiver. Stage 

II is processed at a NWS Warning and Forecast Office (WFO). These data are 

the base digital data produced by the signal processor and are based on Stage I 

hourly digital precipitation data. These data are then transmitted to the RPG 

for processing by meteorological and hydrological analysis algorithms. In the 

future, the NWS plans on doing further Stage II processing by using satellite 

and raingage data to detect and eliminate errors in NEXRAD data associated 

with anomalous propagation or other data contamination not detected during 

stage I processing. Radar and raingage data would then be merged to form an 

optimal "multisensor" estimate rainfall using different techniques depending 

on the raingages' location and the storm type. Stage III data is a product data 

created at the level of the RPG, and is not a base data like Stages I and II. 
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Stage III processing takes place at the RFC and involves the incorporating and 

mosaicking of Stage II precipitation data from each radar in the RFC area 

onto a common grid. This precipitation product is usually constructed for 

major river basins and is destined to be used by the NWS for operational 

streamflow forecasting. Within this stage, there is possibility for more data 

refinement. The forecaster is given the capability to assess the quality of both 

the radar estimated precipitation and the precipitation gage data to make 

modifications to the data as deemed appropriate. Stage IV, a relatively new 

product not available everywhere, corresponds to a post analysis on a PUP of 

hourly stage III rainfall data to generate a national mosaic of regional RFC 

hourly rainfall on the 4 km grid. It is produced at the National Centers for 

Environmental Prediction (NCEP). 

Because of the novelty aspect of the WSR-88D system, all the different data 

stages are not yet available for all of the NEXRAD sites as they are still the 

subject of research work. Level I radar data is probably the most commonly 

available stage of precipitation processing to date. The future availability of the 

other stages will further improve river streamflow forecasts, flash flood 

warnings, reservoir operations and other water management activities. In 

particular, stages III and IV will provide newer and useful precipitation 

estimates for input to many hydrologic and runoff models. 
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UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY - WATER RESOURCES DIVISION 
EXPANDED RATING TABLE TYPE: LOG 

05470500 DATE PROCESSED: 09-01-1994@ 11:04 BY BNATIONS 

~ SQUAW CREEK AT AMES, IA DD: 3 TYPE: 001 RATING NO: 08 
OFFSET: 1.00 START DATE/TIME: 10-01-92 (0015) "'C 
LATITIDE 420121 LONGITUDE 0933745 DRAINAGE AREA 204.00 DATUM 881.00 STATE 19 COUNTY 169 

~ LAST UPDATED BY VEMILLER ON 02-10-1994@ 10:50:41 
GAGE , DIFF INQ 

HEIGHT DISCHARGE IN CUBIC FEET PER SECOND (EXPANDED PRECISION) PER S< 
(FEET) .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 TENTH FT D 

1.30 2.900 3.182 3.482 3.799 4.135 4.489 4.862 5.255 5.667 6.101 3.654 00 

1.40 6.554 7.030 7.527 8.046 8.587 9.152 9.740 10.35 10.99 11 .65 5.786 ~ 
1.50 12.34 13.05 13.79 14.55 15.34 16.16 17.01 17.89 18.79 19.72 8.350 ~ 
1.60 20.69 21.68 22.70 23.75 24.84 25.95 27.10 28.28 29.49 30.74 11 .33 I 

ti 
1.70 32.02 33.33 34.68 36.06 37.48 38.94 40.43 41 .95 43.51 45.11 14.73 

"'""" 
1.80 46.75 48.43 50.14 51 .89 53.69 55.52 57.39 59.30 61 .25 63.25 18.53 00 

C".) 
1.90 65.28 67.36 69.48 71 .64 73.84 76.09 78.38 80.72 83.10 85.53 22.72 

~ 2.00 88.00 90.30 92.65 95.02 97.44 99.89 102.4 104.9 107.5 110.1 24.70 ,_. 
2.10 112.7 115.4 118.1 120.9 123.7 126.5 129.4 132.3 135.3 138.3 28.60 ~ ~ 
2.20 141.3 144.4 147.5 150.7 153.9 157.1 160.4 163.8 167.1 170.5 32.70 
2.30 174.0 177.3 180.6 184.0 187.4 190.8 194.3 197.8 201 .4 205.0 34.60 

~ 2.40 208.6 212.2 215.9 219.7 223.5 227.3 231 .1 235.0 238.9 242.9 38.30 

2.50 246.9 251.0 255.1 259.2 263.3 267.5 271 .8 276.1 280.4 284.7 42.20 ~ 
2.60 289.1 293.6 298.1 302.6 307.1 311 .7 316.4 321 .1 325.8 330.6 46.30 

~ 
2.70 335.4 340.2 345.1 350.0 355.0 360.0 364.2 368.4 372.7 376.9 45.80 0 
2.80 381 .2 385.5 389.9 394.2 398.6 403.0 407.5 412.0 416.4 421 .0 44.30 ~ 
2.90 425.5 430.1 434.7 439.3 443.9 448.6 453.3 458.0 462.7 467.5 46.80 

~ 3.00 472.3 477.1 481 .9 486.8 491.7 496.6 501 .5 506.5 511 .4 516.5 49.20 
3.10 521 .5 526.6 531 .6 536.7 541 .9 547.0 552.2 557.4 562.7 567.9 51 .70 0 
3.20 573.2 578.5 583.8 589.2 594.6 600.0 604.8 609.6 614.4 619.3 50.90 

~ 3.30 624.1 629.0 633.9 638.8 643.7 648.7 653.6 658.6 663.6 668.6 49.50 

3.40 673.6 678.7 683.8 688.8 693.9 699.0 704.2 709.3 714.5 719.6 51 .20 

3.50 724.8 730.0 735.3 740.5 745.8 751 .0 756.3 761.6 767.0 772.3 52.90 ~ 

3.60 777.7 783.0 788.4 793.8 799.3 804.7 810.2 815.6 821 .1 826.6 54.40 ~ 3.70 832.1 837.7 843.2 848.8 854.4 860.0 864.6 869.3 874.0 878.6 51 .20 
3.80 883.3 888.0 892.7 897.4 902.1 906.8 911 .5 916.3 921 .0 925.8 47.20 ~ 
3.90 930.5 935.3 940.0 944.8 949.6 954.4 959.2 964.0 968.9 973.7 48.00 
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UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY -WATER RESOURCES DIVISION 
EXPANDED RATING TABLE TYPE: LOG 

05470500 DATE PROCESSED: 09-01-1994@ 11:04 BY BNATIONS 
SQUAW CREEK AT AMES, IA DD: 3 TYPE: 001 RATING NO: 08 
OFFSET: 1.00 START DATE/TIME: 10-01-92 (0015) 
LATITIDE 420121 LONGITUDE 0933745 DRAINAGE AREA 204.00 DATUM 881.00 STATE 19 COUNTY 169 

LAST UPDATED BY VEMILLER ON 02-10-1994@ 10:50:41 
GAGE " 

DIFF IN Q 

HEIGHT DISCHARGE IN CUBIC FEET PER SECOND (EXPANDED PRECISION) PER 
(FEET) .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 TENTH FT 

4.00 978.5 983.4 988.2 993.1 997.9 1003 1008 1013 1017 1022 48.50 
4.10 1027 1032 1037 1042 1047 1052 1057 1062 1067 1072 50.00 
4.20 1077 1082 1087 1092 1097 1102 1107 1112 1117 1122 50.00 
4.30 1127 1132 1137 1142 1147 1153 1158 1163 1168 1173 51 .00 
4.40 1178 1183 1189 1194 1199 1204 1209 1214 1220 1225 52.00 

4.50 1230 1234 1239 1243 1247 1251 1256 1260 1264 1269 43.00 
4.60 1273 1277 1282 1286 1290 1294 1299 1303 1307 1312 43.00 
4.70 1316 1320 1325 1329 1333 1338 1342 1346 1351 1355 43.00 1--' 

4.80 1359 1364 1368 1373 1377 1381 1386 1390 1394 1399 44.00 ~ 

4.90 1403 1407 1412 1416 1421 1425 1429 1434 1438 1443 44.00 
Ol 

5.00 1447 1451 1456 1460 1465 1469 1473 1478 1482 1487 44.00 
5.10 1491 1496 1500 1504 1509 1513 1518 1522 1527 1531 45.00 
5.20 1536 1540 1544 1549 1553 1558 1562 1567 2571 1576 44.00 
5.30 1580 1585 1589 1594 1598 1603 1607 1611 1616 1620 45.00 
5.40 1625 1629 1634 1638 1643 1647 1652 1656 1661 1665 45.00 

5.50 1670 1674 1678 1681 1685 1689 1693 1697 1700 1704 38.00 
5.60 1708 1712 1715 1719 1723 1727 1731 1734 1738 1742 38.00 
5.70 1746 1750 1753 1757 1761 1765 1769 1772 1776 1780 38.00 
5.80 1784 1788 1791 1795 1799 1803 1806 1810 1814 1818 38.00 
5.90 1822 1825 1829 1833 1837 1841 1844 1848 1852 1856 38.00 

6.00 1860 1863 1867 1871 1875 1879 1882 1886 1890 1894 38.00 
6.10 1898 1901 1905 1909 1913 1917 1920 1924 1928 1932 38.00 
6.20 1936 1939 1943 1947 1951 1955 1958 1962 1966 1970 38.00 
6.30 1974 1977 1981 1985 1989 1993 1996 2000 2004 2008 38.00 
6.40 2012 2015 2019 2023 2027 2031 2034 2038 2042 2046 38.00 
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UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY - WATER RESOURCES DIVISION 
EXPANDED RATING TABLE TYPE: LOG 

05470500 DATE PROCESSED: 09-01-1994@ 11:04 BY BNATIONS 
SQUAW CREEK AT AMES, IA - DD: 3 TYPE: 001 RA TING NO: 08 
OFFSET: 1.00 START DATE!TIME: 10-01-92 (0015) 
LATITIDE 420121 LONGITUDE 0933745 DRAINAGE AREA 204.00 DATUM 881 .00 STATE 19 COUNTY 169 

LAST UPDATED BY VEMILLER ON 02-10-1994@ 10:50:41 
GAGE DIFF IN Q 

HEIGHT DISCHARGE IN CUBIC FEET PER SECOND (EXPANDED PRECISION) PER 
(FEET) .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 TENTH FT 

6.50 2050 2053 2057 2061 2065 2069 2072 2076 2080 2084 38.00 
6.60 2088 2091 2095 2099 2103 2107 2111 2114 2118 2122 38.00 
6.70 2126 2130 2133 2137 2141 2145 2149 2152 2156 2160 38.00 
6.80 2164 2166 2171 2175 2179 2163 2167 2190 2194 2196 36.00 
6.90 2202 2206 2210 2213 2217 2221 2225 2229 2232 2236 36.00 

7.00 2240 2244 2246 2252 2256 2260 2264 2266 2272 2276 40.00 
7.10 2260 2264 2266 2292 2296 2300 2304 2306 2312 2316 40.00 
7.20 2320 2324 2326 2332 2336 2340 2344 2346 2352 2356 40.00 I-' 
7.30 2360 2364 2368 2372 2376 2360 2364 2368 2392 2396 40.00 Nl 

7.40 2400 2404 2407 2411 2415 2419 2423 2427 2431 2435 39.00 
0) 

7.50 2439 1443 2447 2451 2455 2459 2463 2467 2472 2476 41 .00 
7.60 2460 2464 2466 2492 2496 2500 2504 2506 2512 2516 40.00 
7.70 2520 2524 2526 2532 2536 2540 2544 2548 2552 2556 40.00 
7.60 2560 2564 2566 2572 2576 2560 2564 2566 2592 2596 40.00 
7.90 2600 2604 2606 2612 2616 2620 2624 2628 2632 2636 40.00 

6.00 2640 2644 2648 2653 2657 2661 2665 2669 2673 2676 42.00 
6.10 2662 2666 2690 2694 2696 2703 2707 2711 2715 2719 42.00 
6.20 2724 2728 2732 2736 2740 2744 2749 2753 2757 2761 41 .00 
6.30 2765 2770 2774 2778 2782 2766 2791 2795 2799 2803 42.00 
6.40 2807 2811 2816 2820 2824 2628 2832 2837 2641 2645 42.00 

6.50 2649 2853 2858 2662 2666 2870 2874 2879 2663 2667 42.00 
6.60 2891 2895 2900 2904 2908 2912 2917 2921 2925 2929 42.00 
6.70 2933 2936 2942 2946 2950 2954 2959 2963 2967 2971 43.00 
6.60 2976 2980 2984 2986 2992 2997 3001 3005 3009 3014 42.00 
8.90 3016 3022 3026 3030 3035 3039 3043 3047 3052 3056 42.00 
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UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY - WATER RESOURCES DIVISION 
EXPANDED RATING TABLE TYPE: LOG 

05470500 DATE PROCESSED: 09-01-1994@ 11 :04 BY BNATIONS 
SQUAW CREEK AT AMES, IA DD: 3 TYPE: 001 RATING NO: 08 
OFFSET: 1.00 START DATEITIME: 10-01-92 (0015) 
LATITIDE 420121 LONGITUDE 0933745 DRAINAGE AREA 204.00 DATUM 881 .00 STATE 19 COUNTY 169 

LAST UPDATED BY VEMILLER ON 02-10-1994@ 10:50:41 
GAGE DIFF IN Q 

HEIGHT DISCHARGE IN CUBIC FEET PER SECOND (EXPANDED PRECISION) PER 
(FEET) .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 TENTH FT 

9.00 3060 3067 3074 3081 3088 3095 3102 3109 3116 3124 71 .00 
9.10 3131 3138 3145 3152 3159 3166 3173 3181 3188 3195 71 .00 
9.20 3202 3209 3217 3224 3231 3238 3245 3253 3260 3267 72.00 
9.30 3274 3282 3289 3296 3303 3311 3318 3325 3333 3340 73.00 
9.40 3347 3355 3362 3369 3377 3384 3391 3399 3406 3413 74.00 

9.50 3421 3428 3436 3443 3451 3458 3465 3473 3480 3488 74.00 
9.60 3495 3503 3510 3518 3525 3533 3540 3548 3555 3563 75.00 
9.70 3570 3578 3585 3593 3601 3608 3616 3623 3631 3639 76.00 
9.80 3646 3654 3661 3669 3677 3684 3692 3700 3707 3715 77.00 ...... 

t..:i 
9.90 3723 3730 3738 3746 3754 3761 3769 3777 3784 3792 77.00 -.J 

10.00 3800 3809 3819 3828 3838 3847 3856 3866 3875 3885 94.00 
10.10 3894 3904 3913 3923 3932 3942 3951 3961 3971 3980 96.00 
10.20 3990 3999 4009 4019 4028 4038 4048 4057 4067 4077 97.00 
10.30 4087 4096 4106 4116 4126 4135 4145 4155 4165 4175 98.00 
10.40 4185 4195 4204 4214 4224 4234 4244 4254 4264 4274 99.00 

10.50 4284 4294 4304 4314 4324 4334 4344 4354 4364 4374 101 .0 
10.60 2385 4395 4405 4415 4425 4435 4446 4456 4466 4476 102.0 
10.70 4487 4497 4507 4517 4528 4538 4548 4559 4569 4579 103.0 
10.80 4590 4600 4611 4621 4631 4642 4652 4663 4673 4684 104.0 
10.90 4694 4705 4715 4726 4736 4747 4758 4768 4779 4789 106.0 

11 .00 4800 4811 4822 4834 4845 4856 4868 4879 4890 4902 113.0 
11 .00 4913 4925 4936 4947 4959 4970 4982 4993 5005 5016 115.0 
11 .20 5028 5039 5051 5062 5074 5086 5097 5109 5121 5132 116.0 
11 .30 5144 5156 5167 5179 5191 5203 5214 5226 5238 5250 118.0 
11.40 5262 5273 5285 5297 5309 5321 5333 5345 5357 5369 119.0 
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UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY -WATER RESOURCES DIVISION 
EXPANDED RATING TABLE TYPE: LOG 

05470500 DATE PROCESSED: 09-01-1994@ 11 :04 BY BNATIONS 
SQUAW CREEK AT AMES, IA DD: 3 TYPE: 001 RATING NO: 08 
OFFSET: 1.00 ST ART DATEfflME: 10-01-92 (0015) 
LATITIDE 420121 LONGITUDE 0933745 DRAINAGE AREA 204.00 DATUM 881 .00 STATE 19 COUNTY 169 

LAST UPDATED BY VEMILLER ON 02-10-1994@ 10:50:41 
GAGE DIFF IN Q 

HEIGHT DISCHARGE IN CUBIC FEET PER SECOND (EXPANDED PRECISION) PER 
(FE En .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 TENTH FT 

11 .50 5381 5393 5405 5417 5429 5441 5453 5465 5477 5489 121 .0 
11 .60 5502 5514 5526 5538 5550 5563 5575 5587 5599 5612 122.0 
11 .70 5624 5636 5649 5661 5673 5686 5698 5710 5723 5735 124.0 
11 .80 5748 5760 5773 5785 5798 5810 5823 5835 5848 5860 125.0 
11 .90 5873 5886 5898 5911 5924 5936 5949 5962 5974 5987 127.0 

12.00 6000 6011 6023 6034 6046 6057 6069 6080 6092 6103 115.0 
12.10 6115 6126 6138 6150 6161 6173 6184 6196 6208 6219 116.0 
12.20 6231 6243 6254 6266 6278 6289 6301 6313 6324 6336 117.0 
12.30 6348 6360 6372 6383 6395 6407 6419 6431 6443 6454 118.0 f--' 

t-.:i 

12.40 6466 6478 6490 6502 6514 6526 6538 6550 6562 6574 120.0 00 

12.50 6586 6598 6610 6622 6634 6646 6658 6670 6682 6694 120.0 
12.60 6706 6718 6731 6743 6755 6767 6779 6791 6804 6816 122.0 
12.70 6828 6840 6852 6865 6877 6889 6902 6914 6926 6938 123.0 
12.80 6951 6963 6976 6988 7000 7013 7025 7038 7050 7062 124.0 
12.90 7075 7087 7100 7112 7125 7137 7150 7162 7175 7187 125.0 

13.00 7200 7215 7230 7245 7260 7275 7291 7306 7321 7336 151 .0 
13.10 7351 7367 7382 7397 7412 7428 7443 7458 7474 7489 154.0 
13.20 7505 7520 7533 7551 7566 7582 7597 7613 7629 7644 155.0 
13.30 7660 7675 7691 7707 7722 7738 7754 7770 7785 7801 157.0 
13.40 7817 7833 7849 7864 7880 7896 7912 7928 7944 7960 159.0 

13.50 7976 7992 8008 8024 8040 8056 8072 8088 8104 8121 161 .0 
13.60 8137 8153 8169 8185 8202 8218 7234 8251 8267 8283 163.0 
13.70 8300 8316 8332 8349 8365 8382 8398 8415 8431 8448 164.0 
13.80 8464 8481 8498 8514 8531 8548 8564 8581 8598 8614 167.0 
13.90 8631 8648 8665 8682 '1699 8715 8732 8749 8766 8783 169.0 
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UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY - WATER RESOURCES DIVISION 
EXPANDED RATING TABLE TYPE: LOG 

05470500 DATE PROCESSED: 09-01-1994@ 11:04 BY BNATIONS 
SQUAW CREEK AT AMES, IA DD: 3 TYPE: 001 RA TING NO: 08 
OFFSET: 1.00 START DATE/TIME: 10-01-92 (0015) 
LATITIDE 420121 LONGITUDE 0933745 DRAINAGE AREA 204.00 DATUM 881.00 STATE 19 COUNTY 169 

LAST UPDATED BY VEMILLER ON 02-10-1994@ 10:50:41 
GAGE DIFF IN Q 

HEIGHT DISCHARGE IN CUBIC FEET PER SECOND (EXPANDED PRECISION) PER 
(FEET) .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 TENTH FT 

14.00 8800 8820 8840 8861 8881 8901 8922 8942 8963 8983 204.0 
14.10 9004 9024 9045 9065 9086 9107 9127 9148 9169 9190 207.0 
14.20 8211 9231 9252 9273 9294 9315 9336 8357 9378 9399 210.0 
14.30 9421 9442 9463 9484 9505 9527 9548 8569 9591 9612 213.0 
14.40 9634 9655 9677 9698 9720 9741 9763 9785 9806 9828 216.0 

14.50 9850 9872 9894 9917 9939 9961 9983 10010 10030 10050 220.0 
14.60 10070 10100 10120 10140 10160 10190 10210 10230 10250 10280 230.0 
14.70 10300 10320 10350 10370 10390 10410 10440 10460 10480 10510 230.0 
14.80 10530 10550 10580 10600 10620 10650 10670 10690 10720 10740 230.0 ~ 

!:..:> 

14.90 10760 10790 10810 10830 10860 10880 10900 10930 10950 10980 240.0 <.o 

15.00 11000 11030 11060 11090 11110 11140 11170 11200 11230 11260 290.0 
15.10 11290 11320 11350 11380 11410 11440 11460 11490 11520 11550 290.0 
15.20 11580 11610 11640 11670 11700 11730 11760 11790 11820 11850 300.0 
15.30 11880 11910 11940 11970 12000 12040 12070 12100 12130 12160 310.0 
15.40 12190 12220 12250 12280 12310 12340 12370 12410 12440 12470 310.0 

15.50 12500 12520 12550 12570 12590 12620 12640 12660 12690 12710 230.0 
15.60 12730 12760 12780 12810 12830 12850 12880 12900 12920 12950 240.0 
15.70 12970 13000 13020 13040 13070 13090 13120 13140 13160 13190 240.0 
15.80 13210 13240 13260 13280 13310 13330 13360 13380 13410 13430 240.0 
15.90 13450 13480 13500 13530 13550 13580 13600 13630 13650 13680 250.0 

16.00 13700 13730 13770 13800 13840 13870 13910 13940 13980 14010 350.0 
16.10 14050 14080 14120 14150 14190 14220 14260 14290 14330 14360 350.0 
16.20 14400 14440 14470 14510 14540 14580 14620 14650 14690 14720 360.0 
16.30 14760 14800 14830 14870 14910 14940 14980 15020 15050 15090 370.0 
16.40 15130 15160 15200 15240 15280 15310 15350 15390 15420 15460 370.0 
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UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY - WATER RESOURCES DIVISION 
EXPANDED RATING TABLE TYPE: LOG 

05470500 DATE PROCESSED: 09-01-1994@ 11:04 BY BNATIONS 
SQUAW CREEK AT AMES, IA DD: 3 TYPE: 001 RATING NO: 08 
OFFSET: 1.00 START DATE/TIME: 10-01-92 (0015) 
LATITIDE 420121 LONGITUDE 0933745 DRAINAGE AREA 204.00 DATUM 881.00 STATE 19 COUNTY 169 

LAST UPDATED BY VEMILLER ON 02-10-1994@ 10:50:41 
GAGE DIFF IN Q 

HEIGHT DISCHARGE IN CUBIC FEET PER SECOND (EXPANDED PRECISION) PER 
(FE En .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 TENTH FT 

16.50 15500 15540 15570 15610 15650 15680 15720 15760 15790 15830 370.0 
16.60 15870 15900 15940 15980 16020 16050 16090 16130 16170 16200 370.0 
16.70 16240 16280 16320 16350 16390 16430 16470 16510 16540 16580 380.0 
16.80 16620 16660 16700 16740 16770 16810 16850 16890 16930 16970 390.0 
16.90 17010 17050 17090 17120 17160 17200 17240 17280 17320 17360 390.0 

17.00 17400 17430 17470 17500 17540 17570 17610 17640 17680 17710 350.0 
17.10 17750 17790 17820 17860 17890 17930 17960 18000 18030 18070 360.0 
17.20 18110 18140 18180 18210 18250 18280 18320 18360 18390 17430 360.0 
17.30 18470 18500 18540 18570 18610 18650 18680 18720 18760 18790 360.0 ~ w 
17.40 18830 18870 18900 18940 18980 19010 19050 19090 19130 19160 370.0 0 

17.50 19200 19240 19290 19330 19380 19420 19470 19510 19560 19600 440.0 
17.60 19640 19690 19730 19780 19820 19870 19920 19960 20010 20050 460.0 
17.70 20100 20140 20190 20230 20280 20330 20370 20420 20460 20510 460.0 
17.80 20560 20600 20650 20700 20740 20790 20840 20880 20930 20980 460.0 
17.90 21020 21070 21120 21170 21210 21260 21310 21360 21400 21450 480.0 

18.00 21500 21550 21600 21650 21700 21750 21800 21850 21900 21950 500.0 
18.10 22000 22050 22100 22150 22200 22250 22300 22350 22400 22450 500.0 
18.20 22500 22550 22600 22650 22700 22750 22810 22860 22910 22960 510.0 
18.30 23010 23060 23110 23170 23220 23270 23320 23370 23430 23480 520.0 
18.40 23530 23580 23640 23690 23740 23800 23850 23900 23960 24010 530.0 

18.50 24060 24120 24170 24220 24280 24330 24380 24440 24490 24550 540.0 
18.60 24600 

(reprinted from Tebben, 1997, pp. 61-67) 
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